|
import json |
|
from abc import ABC, abstractmethod |
|
from collections.abc import Generator |
|
from typing import Optional, Union |
|
|
|
from core.agent.base_agent_runner import BaseAgentRunner |
|
from core.agent.entities import AgentScratchpadUnit |
|
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser |
|
from core.app.apps.base_app_queue_manager import PublishFrom |
|
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent |
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage |
|
from core.model_runtime.entities.message_entities import ( |
|
AssistantPromptMessage, |
|
PromptMessage, |
|
ToolPromptMessage, |
|
UserPromptMessage, |
|
) |
|
from core.ops.ops_trace_manager import TraceQueueManager |
|
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform |
|
from core.tools.entities.tool_entities import ToolInvokeMeta |
|
from core.tools.tool.tool import Tool |
|
from core.tools.tool_engine import ToolEngine |
|
from models.model import Message |
|
|
|
|
|
class CotAgentRunner(BaseAgentRunner, ABC): |
|
_is_first_iteration = True |
|
_ignore_observation_providers = ["wenxin"] |
|
_historic_prompt_messages: list[PromptMessage] = None |
|
_agent_scratchpad: list[AgentScratchpadUnit] = None |
|
_instruction: str = None |
|
_query: str = None |
|
_prompt_messages_tools: list[PromptMessage] = None |
|
|
|
def run( |
|
self, |
|
message: Message, |
|
query: str, |
|
inputs: dict[str, str], |
|
) -> Union[Generator, LLMResult]: |
|
""" |
|
Run Cot agent application |
|
""" |
|
app_generate_entity = self.application_generate_entity |
|
self._repack_app_generate_entity(app_generate_entity) |
|
self._init_react_state(query) |
|
|
|
trace_manager = app_generate_entity.trace_manager |
|
|
|
|
|
if "Observation" not in app_generate_entity.model_conf.stop: |
|
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers: |
|
app_generate_entity.model_conf.stop.append("Observation") |
|
|
|
app_config = self.app_config |
|
|
|
|
|
inputs = inputs or {} |
|
instruction = app_config.prompt_template.simple_prompt_template |
|
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs) |
|
|
|
iteration_step = 1 |
|
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1 |
|
|
|
|
|
tool_instances, self._prompt_messages_tools = self._init_prompt_tools() |
|
|
|
function_call_state = True |
|
llm_usage = {"usage": None} |
|
final_answer = "" |
|
|
|
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage): |
|
if not final_llm_usage_dict["usage"]: |
|
final_llm_usage_dict["usage"] = usage |
|
else: |
|
llm_usage = final_llm_usage_dict["usage"] |
|
llm_usage.prompt_tokens += usage.prompt_tokens |
|
llm_usage.completion_tokens += usage.completion_tokens |
|
llm_usage.prompt_price += usage.prompt_price |
|
llm_usage.completion_price += usage.completion_price |
|
llm_usage.total_price += usage.total_price |
|
|
|
model_instance = self.model_instance |
|
|
|
while function_call_state and iteration_step <= max_iteration_steps: |
|
|
|
function_call_state = False |
|
|
|
if iteration_step == max_iteration_steps: |
|
|
|
self._prompt_messages_tools = [] |
|
|
|
message_file_ids = [] |
|
|
|
agent_thought = self.create_agent_thought( |
|
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids |
|
) |
|
|
|
if iteration_step > 1: |
|
self.queue_manager.publish( |
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER |
|
) |
|
|
|
|
|
prompt_messages = self._organize_prompt_messages() |
|
self.recalc_llm_max_tokens(self.model_config, prompt_messages) |
|
|
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm( |
|
prompt_messages=prompt_messages, |
|
model_parameters=app_generate_entity.model_conf.parameters, |
|
tools=[], |
|
stop=app_generate_entity.model_conf.stop, |
|
stream=True, |
|
user=self.user_id, |
|
callbacks=[], |
|
) |
|
|
|
|
|
if not chunks: |
|
raise ValueError("failed to invoke llm") |
|
|
|
usage_dict = {} |
|
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict) |
|
scratchpad = AgentScratchpadUnit( |
|
agent_response="", |
|
thought="", |
|
action_str="", |
|
observation="", |
|
action=None, |
|
) |
|
|
|
|
|
if iteration_step == 1: |
|
self.queue_manager.publish( |
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER |
|
) |
|
|
|
for chunk in react_chunks: |
|
if isinstance(chunk, AgentScratchpadUnit.Action): |
|
action = chunk |
|
|
|
scratchpad.agent_response += json.dumps(chunk.model_dump()) |
|
scratchpad.action_str = json.dumps(chunk.model_dump()) |
|
scratchpad.action = action |
|
else: |
|
scratchpad.agent_response += chunk |
|
scratchpad.thought += chunk |
|
yield LLMResultChunk( |
|
model=self.model_config.model, |
|
prompt_messages=prompt_messages, |
|
system_fingerprint="", |
|
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None), |
|
) |
|
|
|
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you" |
|
self._agent_scratchpad.append(scratchpad) |
|
|
|
|
|
if "usage" in usage_dict: |
|
increase_usage(llm_usage, usage_dict["usage"]) |
|
else: |
|
usage_dict["usage"] = LLMUsage.empty_usage() |
|
|
|
self.save_agent_thought( |
|
agent_thought=agent_thought, |
|
tool_name=scratchpad.action.action_name if scratchpad.action else "", |
|
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {}, |
|
tool_invoke_meta={}, |
|
thought=scratchpad.thought, |
|
observation="", |
|
answer=scratchpad.agent_response, |
|
messages_ids=[], |
|
llm_usage=usage_dict["usage"], |
|
) |
|
|
|
if not scratchpad.is_final(): |
|
self.queue_manager.publish( |
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER |
|
) |
|
|
|
if not scratchpad.action: |
|
|
|
final_answer = "" |
|
else: |
|
if scratchpad.action.action_name.lower() == "final answer": |
|
|
|
try: |
|
if isinstance(scratchpad.action.action_input, dict): |
|
final_answer = json.dumps(scratchpad.action.action_input) |
|
elif isinstance(scratchpad.action.action_input, str): |
|
final_answer = scratchpad.action.action_input |
|
else: |
|
final_answer = f"{scratchpad.action.action_input}" |
|
except json.JSONDecodeError: |
|
final_answer = f"{scratchpad.action.action_input}" |
|
else: |
|
function_call_state = True |
|
|
|
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action( |
|
action=scratchpad.action, |
|
tool_instances=tool_instances, |
|
message_file_ids=message_file_ids, |
|
trace_manager=trace_manager, |
|
) |
|
scratchpad.observation = tool_invoke_response |
|
scratchpad.agent_response = tool_invoke_response |
|
|
|
self.save_agent_thought( |
|
agent_thought=agent_thought, |
|
tool_name=scratchpad.action.action_name, |
|
tool_input={scratchpad.action.action_name: scratchpad.action.action_input}, |
|
thought=scratchpad.thought, |
|
observation={scratchpad.action.action_name: tool_invoke_response}, |
|
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()}, |
|
answer=scratchpad.agent_response, |
|
messages_ids=message_file_ids, |
|
llm_usage=usage_dict["usage"], |
|
) |
|
|
|
self.queue_manager.publish( |
|
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER |
|
) |
|
|
|
|
|
for prompt_tool in self._prompt_messages_tools: |
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) |
|
|
|
iteration_step += 1 |
|
|
|
yield LLMResultChunk( |
|
model=model_instance.model, |
|
prompt_messages=prompt_messages, |
|
delta=LLMResultChunkDelta( |
|
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"] |
|
), |
|
system_fingerprint="", |
|
) |
|
|
|
|
|
self.save_agent_thought( |
|
agent_thought=agent_thought, |
|
tool_name="", |
|
tool_input={}, |
|
tool_invoke_meta={}, |
|
thought=final_answer, |
|
observation={}, |
|
answer=final_answer, |
|
messages_ids=[], |
|
) |
|
|
|
self.update_db_variables(self.variables_pool, self.db_variables_pool) |
|
|
|
self.queue_manager.publish( |
|
QueueMessageEndEvent( |
|
llm_result=LLMResult( |
|
model=model_instance.model, |
|
prompt_messages=prompt_messages, |
|
message=AssistantPromptMessage(content=final_answer), |
|
usage=llm_usage["usage"] or LLMUsage.empty_usage(), |
|
system_fingerprint="", |
|
) |
|
), |
|
PublishFrom.APPLICATION_MANAGER, |
|
) |
|
|
|
def _handle_invoke_action( |
|
self, |
|
action: AgentScratchpadUnit.Action, |
|
tool_instances: dict[str, Tool], |
|
message_file_ids: list[str], |
|
trace_manager: Optional[TraceQueueManager] = None, |
|
) -> tuple[str, ToolInvokeMeta]: |
|
""" |
|
handle invoke action |
|
:param action: action |
|
:param tool_instances: tool instances |
|
:param message_file_ids: message file ids |
|
:param trace_manager: trace manager |
|
:return: observation, meta |
|
""" |
|
|
|
tool_call_name = action.action_name |
|
tool_call_args = action.action_input |
|
tool_instance = tool_instances.get(tool_call_name) |
|
|
|
if not tool_instance: |
|
answer = f"there is not a tool named {tool_call_name}" |
|
return answer, ToolInvokeMeta.error_instance(answer) |
|
|
|
if isinstance(tool_call_args, str): |
|
try: |
|
tool_call_args = json.loads(tool_call_args) |
|
except json.JSONDecodeError: |
|
pass |
|
|
|
|
|
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke( |
|
tool=tool_instance, |
|
tool_parameters=tool_call_args, |
|
user_id=self.user_id, |
|
tenant_id=self.tenant_id, |
|
message=self.message, |
|
invoke_from=self.application_generate_entity.invoke_from, |
|
agent_tool_callback=self.agent_callback, |
|
trace_manager=trace_manager, |
|
) |
|
|
|
|
|
for message_file_id, save_as in message_files: |
|
if save_as: |
|
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as) |
|
|
|
|
|
self.queue_manager.publish( |
|
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER |
|
) |
|
|
|
message_file_ids.append(message_file_id) |
|
|
|
return tool_invoke_response, tool_invoke_meta |
|
|
|
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action: |
|
""" |
|
convert dict to action |
|
""" |
|
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"]) |
|
|
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str: |
|
""" |
|
fill in inputs from external data tools |
|
""" |
|
for key, value in inputs.items(): |
|
try: |
|
instruction = instruction.replace(f"{{{{{key}}}}}", str(value)) |
|
except Exception as e: |
|
continue |
|
|
|
return instruction |
|
|
|
def _init_react_state(self, query) -> None: |
|
""" |
|
init agent scratchpad |
|
""" |
|
self._query = query |
|
self._agent_scratchpad = [] |
|
self._historic_prompt_messages = self._organize_historic_prompt_messages() |
|
|
|
@abstractmethod |
|
def _organize_prompt_messages(self) -> list[PromptMessage]: |
|
""" |
|
organize prompt messages |
|
""" |
|
|
|
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str: |
|
""" |
|
format assistant message |
|
""" |
|
message = "" |
|
for scratchpad in agent_scratchpad: |
|
if scratchpad.is_final(): |
|
message += f"Final Answer: {scratchpad.agent_response}" |
|
else: |
|
message += f"Thought: {scratchpad.thought}\n\n" |
|
if scratchpad.action_str: |
|
message += f"Action: {scratchpad.action_str}\n\n" |
|
if scratchpad.observation: |
|
message += f"Observation: {scratchpad.observation}\n\n" |
|
|
|
return message |
|
|
|
def _organize_historic_prompt_messages( |
|
self, current_session_messages: Optional[list[PromptMessage]] = None |
|
) -> list[PromptMessage]: |
|
""" |
|
organize historic prompt messages |
|
""" |
|
result: list[PromptMessage] = [] |
|
scratchpads: list[AgentScratchpadUnit] = [] |
|
current_scratchpad: AgentScratchpadUnit = None |
|
|
|
for message in self.history_prompt_messages: |
|
if isinstance(message, AssistantPromptMessage): |
|
if not current_scratchpad: |
|
current_scratchpad = AgentScratchpadUnit( |
|
agent_response=message.content, |
|
thought=message.content or "I am thinking about how to help you", |
|
action_str="", |
|
action=None, |
|
observation=None, |
|
) |
|
scratchpads.append(current_scratchpad) |
|
if message.tool_calls: |
|
try: |
|
current_scratchpad.action = AgentScratchpadUnit.Action( |
|
action_name=message.tool_calls[0].function.name, |
|
action_input=json.loads(message.tool_calls[0].function.arguments), |
|
) |
|
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict()) |
|
except: |
|
pass |
|
elif isinstance(message, ToolPromptMessage): |
|
if current_scratchpad: |
|
current_scratchpad.observation = message.content |
|
elif isinstance(message, UserPromptMessage): |
|
if scratchpads: |
|
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads))) |
|
scratchpads = [] |
|
current_scratchpad = None |
|
|
|
result.append(message) |
|
|
|
if scratchpads: |
|
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads))) |
|
|
|
historic_prompts = AgentHistoryPromptTransform( |
|
model_config=self.model_config, |
|
prompt_messages=current_session_messages or [], |
|
history_messages=result, |
|
memory=self.memory, |
|
).get_prompt() |
|
return historic_prompts |
|
|