|
import base64 |
|
import logging |
|
from typing import Optional, cast |
|
|
|
import numpy as np |
|
from sqlalchemy.exc import IntegrityError |
|
|
|
from configs import dify_config |
|
from core.entities.embedding_type import EmbeddingInputType |
|
from core.model_manager import ModelInstance |
|
from core.model_runtime.entities.model_entities import ModelPropertyKey |
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel |
|
from core.rag.embedding.embedding_base import Embeddings |
|
from extensions.ext_database import db |
|
from extensions.ext_redis import redis_client |
|
from libs import helper |
|
from models.dataset import Embedding |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class CacheEmbedding(Embeddings): |
|
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None: |
|
self._model_instance = model_instance |
|
self._user = user |
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]: |
|
"""Embed search docs in batches of 10.""" |
|
|
|
text_embeddings = [None for _ in range(len(texts))] |
|
embedding_queue_indices = [] |
|
for i, text in enumerate(texts): |
|
hash = helper.generate_text_hash(text) |
|
embedding = ( |
|
db.session.query(Embedding) |
|
.filter_by( |
|
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider |
|
) |
|
.first() |
|
) |
|
if embedding: |
|
text_embeddings[i] = embedding.get_embedding() |
|
else: |
|
embedding_queue_indices.append(i) |
|
if embedding_queue_indices: |
|
embedding_queue_texts = [texts[i] for i in embedding_queue_indices] |
|
embedding_queue_embeddings = [] |
|
try: |
|
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance) |
|
model_schema = model_type_instance.get_model_schema( |
|
self._model_instance.model, self._model_instance.credentials |
|
) |
|
max_chunks = ( |
|
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] |
|
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties |
|
else 1 |
|
) |
|
for i in range(0, len(embedding_queue_texts), max_chunks): |
|
batch_texts = embedding_queue_texts[i : i + max_chunks] |
|
|
|
embedding_result = self._model_instance.invoke_text_embedding( |
|
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT |
|
) |
|
|
|
for vector in embedding_result.embeddings: |
|
try: |
|
normalized_embedding = (vector / np.linalg.norm(vector)).tolist() |
|
embedding_queue_embeddings.append(normalized_embedding) |
|
except IntegrityError: |
|
db.session.rollback() |
|
except Exception as e: |
|
logging.exception("Failed transform embedding: %s", e) |
|
cache_embeddings = [] |
|
try: |
|
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings): |
|
text_embeddings[i] = embedding |
|
hash = helper.generate_text_hash(texts[i]) |
|
if hash not in cache_embeddings: |
|
embedding_cache = Embedding( |
|
model_name=self._model_instance.model, |
|
hash=hash, |
|
provider_name=self._model_instance.provider, |
|
) |
|
embedding_cache.set_embedding(embedding) |
|
db.session.add(embedding_cache) |
|
cache_embeddings.append(hash) |
|
db.session.commit() |
|
except IntegrityError: |
|
db.session.rollback() |
|
except Exception as ex: |
|
db.session.rollback() |
|
logger.error("Failed to embed documents: %s", ex) |
|
raise ex |
|
|
|
return text_embeddings |
|
|
|
def embed_query(self, text: str) -> list[float]: |
|
"""Embed query text.""" |
|
|
|
hash = helper.generate_text_hash(text) |
|
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}" |
|
embedding = redis_client.get(embedding_cache_key) |
|
if embedding: |
|
redis_client.expire(embedding_cache_key, 600) |
|
return list(np.frombuffer(base64.b64decode(embedding), dtype="float")) |
|
try: |
|
embedding_result = self._model_instance.invoke_text_embedding( |
|
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY |
|
) |
|
|
|
embedding_results = embedding_result.embeddings[0] |
|
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() |
|
except Exception as ex: |
|
if dify_config.DEBUG: |
|
logging.exception(f"Failed to embed query text: {ex}") |
|
raise ex |
|
|
|
try: |
|
|
|
embedding_vector = np.array(embedding_results) |
|
vector_bytes = embedding_vector.tobytes() |
|
|
|
encoded_vector = base64.b64encode(vector_bytes) |
|
|
|
encoded_str = encoded_vector.decode("utf-8") |
|
redis_client.setex(embedding_cache_key, 600, encoded_str) |
|
except Exception as ex: |
|
if dify_config.DEBUG: |
|
logging.exception("Failed to add embedding to redis %s", ex) |
|
raise ex |
|
|
|
return embedding_results |
|
|