|
import datetime |
|
import json |
|
import logging |
|
import random |
|
import time |
|
import uuid |
|
from typing import Any, Optional |
|
|
|
from flask_login import current_user |
|
from sqlalchemy import func |
|
from werkzeug.exceptions import NotFound |
|
|
|
from configs import dify_config |
|
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError |
|
from core.model_manager import ModelManager |
|
from core.model_runtime.entities.model_entities import ModelType |
|
from core.rag.datasource.keyword.keyword_factory import Keyword |
|
from core.rag.models.document import Document as RAGDocument |
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod |
|
from events.dataset_event import dataset_was_deleted |
|
from events.document_event import document_was_deleted |
|
from extensions.ext_database import db |
|
from extensions.ext_redis import redis_client |
|
from libs import helper |
|
from models.account import Account, TenantAccountRole |
|
from models.dataset import ( |
|
AppDatasetJoin, |
|
Dataset, |
|
DatasetCollectionBinding, |
|
DatasetPermission, |
|
DatasetPermissionEnum, |
|
DatasetProcessRule, |
|
DatasetQuery, |
|
Document, |
|
DocumentSegment, |
|
ExternalKnowledgeBindings, |
|
) |
|
from models.model import UploadFile |
|
from models.source import DataSourceOauthBinding |
|
from services.errors.account import NoPermissionError |
|
from services.errors.dataset import DatasetNameDuplicateError |
|
from services.errors.document import DocumentIndexingError |
|
from services.errors.file import FileNotExistsError |
|
from services.external_knowledge_service import ExternalDatasetService |
|
from services.feature_service import FeatureModel, FeatureService |
|
from services.tag_service import TagService |
|
from services.vector_service import VectorService |
|
from tasks.clean_notion_document_task import clean_notion_document_task |
|
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task |
|
from tasks.delete_segment_from_index_task import delete_segment_from_index_task |
|
from tasks.disable_segment_from_index_task import disable_segment_from_index_task |
|
from tasks.document_indexing_task import document_indexing_task |
|
from tasks.document_indexing_update_task import document_indexing_update_task |
|
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task |
|
from tasks.recover_document_indexing_task import recover_document_indexing_task |
|
from tasks.retry_document_indexing_task import retry_document_indexing_task |
|
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task |
|
|
|
|
|
class DatasetService: |
|
@staticmethod |
|
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None): |
|
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc()) |
|
|
|
if user: |
|
|
|
dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all() |
|
permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None |
|
|
|
if user.current_role == TenantAccountRole.DATASET_OPERATOR: |
|
|
|
if permitted_dataset_ids: |
|
query = query.filter(Dataset.id.in_(permitted_dataset_ids)) |
|
else: |
|
return [], 0 |
|
else: |
|
|
|
if permitted_dataset_ids: |
|
query = query.filter( |
|
db.or_( |
|
Dataset.permission == DatasetPermissionEnum.ALL_TEAM, |
|
db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), |
|
db.and_( |
|
Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM, |
|
Dataset.id.in_(permitted_dataset_ids), |
|
), |
|
) |
|
) |
|
else: |
|
query = query.filter( |
|
db.or_( |
|
Dataset.permission == DatasetPermissionEnum.ALL_TEAM, |
|
db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), |
|
) |
|
) |
|
else: |
|
|
|
query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM) |
|
|
|
if search: |
|
query = query.filter(Dataset.name.ilike(f"%{search}%")) |
|
|
|
if tag_ids: |
|
target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids) |
|
if target_ids: |
|
query = query.filter(Dataset.id.in_(target_ids)) |
|
else: |
|
return [], 0 |
|
|
|
datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) |
|
|
|
return datasets.items, datasets.total |
|
|
|
@staticmethod |
|
def get_process_rules(dataset_id): |
|
|
|
dataset_process_rule = ( |
|
db.session.query(DatasetProcessRule) |
|
.filter(DatasetProcessRule.dataset_id == dataset_id) |
|
.order_by(DatasetProcessRule.created_at.desc()) |
|
.limit(1) |
|
.one_or_none() |
|
) |
|
if dataset_process_rule: |
|
mode = dataset_process_rule.mode |
|
rules = dataset_process_rule.rules_dict |
|
else: |
|
mode = DocumentService.DEFAULT_RULES["mode"] |
|
rules = DocumentService.DEFAULT_RULES["rules"] |
|
return {"mode": mode, "rules": rules} |
|
|
|
@staticmethod |
|
def get_datasets_by_ids(ids, tenant_id): |
|
datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate( |
|
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False |
|
) |
|
return datasets.items, datasets.total |
|
|
|
@staticmethod |
|
def create_empty_dataset( |
|
tenant_id: str, |
|
name: str, |
|
description: Optional[str], |
|
indexing_technique: Optional[str], |
|
account: Account, |
|
permission: Optional[str] = None, |
|
provider: str = "vendor", |
|
external_knowledge_api_id: Optional[str] = None, |
|
external_knowledge_id: Optional[str] = None, |
|
): |
|
|
|
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first(): |
|
raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.") |
|
embedding_model = None |
|
if indexing_technique == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_default_model_instance( |
|
tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING |
|
) |
|
dataset = Dataset(name=name, indexing_technique=indexing_technique) |
|
|
|
dataset.description = description |
|
dataset.created_by = account.id |
|
dataset.updated_by = account.id |
|
dataset.tenant_id = tenant_id |
|
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None |
|
dataset.embedding_model = embedding_model.model if embedding_model else None |
|
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME |
|
dataset.provider = provider |
|
db.session.add(dataset) |
|
db.session.flush() |
|
|
|
if provider == "external" and external_knowledge_api_id: |
|
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id) |
|
if not external_knowledge_api: |
|
raise ValueError("External API template not found.") |
|
external_knowledge_binding = ExternalKnowledgeBindings( |
|
tenant_id=tenant_id, |
|
dataset_id=dataset.id, |
|
external_knowledge_api_id=external_knowledge_api_id, |
|
external_knowledge_id=external_knowledge_id, |
|
created_by=account.id, |
|
) |
|
db.session.add(external_knowledge_binding) |
|
|
|
db.session.commit() |
|
return dataset |
|
|
|
@staticmethod |
|
def get_dataset(dataset_id) -> Dataset: |
|
return Dataset.query.filter_by(id=dataset_id).first() |
|
|
|
@staticmethod |
|
def check_dataset_model_setting(dataset): |
|
if dataset.indexing_technique == "high_quality": |
|
try: |
|
model_manager = ModelManager() |
|
model_manager.get_model_instance( |
|
tenant_id=dataset.tenant_id, |
|
provider=dataset.embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=dataset.embedding_model, |
|
) |
|
except LLMBadRequestError: |
|
raise ValueError( |
|
"No Embedding Model available. Please configure a valid provider " |
|
"in the Settings -> Model Provider." |
|
) |
|
except ProviderTokenNotInitError as ex: |
|
raise ValueError(f"The dataset in unavailable, due to: {ex.description}") |
|
|
|
@staticmethod |
|
def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str): |
|
try: |
|
model_manager = ModelManager() |
|
model_manager.get_model_instance( |
|
tenant_id=tenant_id, |
|
provider=embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=embedding_model, |
|
) |
|
except LLMBadRequestError: |
|
raise ValueError( |
|
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider." |
|
) |
|
except ProviderTokenNotInitError as ex: |
|
raise ValueError(f"The dataset in unavailable, due to: {ex.description}") |
|
|
|
@staticmethod |
|
def update_dataset(dataset_id, data, user): |
|
dataset = DatasetService.get_dataset(dataset_id) |
|
|
|
DatasetService.check_dataset_permission(dataset, user) |
|
if dataset.provider == "external": |
|
dataset.retrieval_model = data.get("external_retrieval_model", None) |
|
dataset.name = data.get("name", dataset.name) |
|
dataset.description = data.get("description", "") |
|
external_knowledge_id = data.get("external_knowledge_id", None) |
|
dataset.permission = data.get("permission") |
|
db.session.add(dataset) |
|
if not external_knowledge_id: |
|
raise ValueError("External knowledge id is required.") |
|
external_knowledge_api_id = data.get("external_knowledge_api_id", None) |
|
if not external_knowledge_api_id: |
|
raise ValueError("External knowledge api id is required.") |
|
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first() |
|
if ( |
|
external_knowledge_binding.external_knowledge_id != external_knowledge_id |
|
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id |
|
): |
|
external_knowledge_binding.external_knowledge_id = external_knowledge_id |
|
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id |
|
db.session.add(external_knowledge_binding) |
|
db.session.commit() |
|
else: |
|
data.pop("partial_member_list", None) |
|
data.pop("external_knowledge_api_id", None) |
|
data.pop("external_knowledge_id", None) |
|
data.pop("external_retrieval_model", None) |
|
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"} |
|
action = None |
|
if dataset.indexing_technique != data["indexing_technique"]: |
|
|
|
if data["indexing_technique"] == "economy": |
|
action = "remove" |
|
filtered_data["embedding_model"] = None |
|
filtered_data["embedding_model_provider"] = None |
|
filtered_data["collection_binding_id"] = None |
|
elif data["indexing_technique"] == "high_quality": |
|
action = "add" |
|
|
|
try: |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=current_user.current_tenant_id, |
|
provider=data["embedding_model_provider"], |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=data["embedding_model"], |
|
) |
|
filtered_data["embedding_model"] = embedding_model.model |
|
filtered_data["embedding_model_provider"] = embedding_model.provider |
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( |
|
embedding_model.provider, embedding_model.model |
|
) |
|
filtered_data["collection_binding_id"] = dataset_collection_binding.id |
|
except LLMBadRequestError: |
|
raise ValueError( |
|
"No Embedding Model available. Please configure a valid provider " |
|
"in the Settings -> Model Provider." |
|
) |
|
except ProviderTokenNotInitError as ex: |
|
raise ValueError(ex.description) |
|
else: |
|
if ( |
|
data["embedding_model_provider"] != dataset.embedding_model_provider |
|
or data["embedding_model"] != dataset.embedding_model |
|
): |
|
action = "update" |
|
try: |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=current_user.current_tenant_id, |
|
provider=data["embedding_model_provider"], |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=data["embedding_model"], |
|
) |
|
filtered_data["embedding_model"] = embedding_model.model |
|
filtered_data["embedding_model_provider"] = embedding_model.provider |
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( |
|
embedding_model.provider, embedding_model.model |
|
) |
|
filtered_data["collection_binding_id"] = dataset_collection_binding.id |
|
except LLMBadRequestError: |
|
raise ValueError( |
|
"No Embedding Model available. Please configure a valid provider " |
|
"in the Settings -> Model Provider." |
|
) |
|
except ProviderTokenNotInitError as ex: |
|
raise ValueError(ex.description) |
|
|
|
filtered_data["updated_by"] = user.id |
|
filtered_data["updated_at"] = datetime.datetime.now() |
|
|
|
|
|
filtered_data["retrieval_model"] = data["retrieval_model"] |
|
|
|
dataset.query.filter_by(id=dataset_id).update(filtered_data) |
|
|
|
db.session.commit() |
|
if action: |
|
deal_dataset_vector_index_task.delay(dataset_id, action) |
|
return dataset |
|
|
|
@staticmethod |
|
def delete_dataset(dataset_id, user): |
|
dataset = DatasetService.get_dataset(dataset_id) |
|
|
|
if dataset is None: |
|
return False |
|
|
|
DatasetService.check_dataset_permission(dataset, user) |
|
|
|
dataset_was_deleted.send(dataset) |
|
|
|
db.session.delete(dataset) |
|
db.session.commit() |
|
return True |
|
|
|
@staticmethod |
|
def dataset_use_check(dataset_id) -> bool: |
|
count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count() |
|
if count > 0: |
|
return True |
|
return False |
|
|
|
@staticmethod |
|
def check_dataset_permission(dataset, user): |
|
if dataset.tenant_id != user.current_tenant_id: |
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") |
|
raise NoPermissionError("You do not have permission to access this dataset.") |
|
if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id: |
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") |
|
raise NoPermissionError("You do not have permission to access this dataset.") |
|
if dataset.permission == "partial_members": |
|
user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first() |
|
if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id: |
|
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") |
|
raise NoPermissionError("You do not have permission to access this dataset.") |
|
|
|
@staticmethod |
|
def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None): |
|
if dataset.permission == DatasetPermissionEnum.ONLY_ME: |
|
if dataset.created_by != user.id: |
|
raise NoPermissionError("You do not have permission to access this dataset.") |
|
|
|
elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM: |
|
if not any( |
|
dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all() |
|
): |
|
raise NoPermissionError("You do not have permission to access this dataset.") |
|
|
|
@staticmethod |
|
def get_dataset_queries(dataset_id: str, page: int, per_page: int): |
|
dataset_queries = ( |
|
DatasetQuery.query.filter_by(dataset_id=dataset_id) |
|
.order_by(db.desc(DatasetQuery.created_at)) |
|
.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) |
|
) |
|
return dataset_queries.items, dataset_queries.total |
|
|
|
@staticmethod |
|
def get_related_apps(dataset_id: str): |
|
return ( |
|
AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) |
|
.order_by(db.desc(AppDatasetJoin.created_at)) |
|
.all() |
|
) |
|
|
|
|
|
class DocumentService: |
|
DEFAULT_RULES = { |
|
"mode": "custom", |
|
"rules": { |
|
"pre_processing_rules": [ |
|
{"id": "remove_extra_spaces", "enabled": True}, |
|
{"id": "remove_urls_emails", "enabled": False}, |
|
], |
|
"segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50}, |
|
}, |
|
} |
|
|
|
DOCUMENT_METADATA_SCHEMA = { |
|
"book": { |
|
"title": str, |
|
"language": str, |
|
"author": str, |
|
"publisher": str, |
|
"publication_date": str, |
|
"isbn": str, |
|
"category": str, |
|
}, |
|
"web_page": { |
|
"title": str, |
|
"url": str, |
|
"language": str, |
|
"publish_date": str, |
|
"author/publisher": str, |
|
"topic/keywords": str, |
|
"description": str, |
|
}, |
|
"paper": { |
|
"title": str, |
|
"language": str, |
|
"author": str, |
|
"publish_date": str, |
|
"journal/conference_name": str, |
|
"volume/issue/page_numbers": str, |
|
"doi": str, |
|
"topic/keywords": str, |
|
"abstract": str, |
|
}, |
|
"social_media_post": { |
|
"platform": str, |
|
"author/username": str, |
|
"publish_date": str, |
|
"post_url": str, |
|
"topic/tags": str, |
|
}, |
|
"wikipedia_entry": { |
|
"title": str, |
|
"language": str, |
|
"web_page_url": str, |
|
"last_edit_date": str, |
|
"editor/contributor": str, |
|
"summary/introduction": str, |
|
}, |
|
"personal_document": { |
|
"title": str, |
|
"author": str, |
|
"creation_date": str, |
|
"last_modified_date": str, |
|
"document_type": str, |
|
"tags/category": str, |
|
}, |
|
"business_document": { |
|
"title": str, |
|
"author": str, |
|
"creation_date": str, |
|
"last_modified_date": str, |
|
"document_type": str, |
|
"department/team": str, |
|
}, |
|
"im_chat_log": { |
|
"chat_platform": str, |
|
"chat_participants/group_name": str, |
|
"start_date": str, |
|
"end_date": str, |
|
"summary": str, |
|
}, |
|
"synced_from_notion": { |
|
"title": str, |
|
"language": str, |
|
"author/creator": str, |
|
"creation_date": str, |
|
"last_modified_date": str, |
|
"notion_page_link": str, |
|
"category/tags": str, |
|
"description": str, |
|
}, |
|
"synced_from_github": { |
|
"repository_name": str, |
|
"repository_description": str, |
|
"repository_owner/organization": str, |
|
"code_filename": str, |
|
"code_file_path": str, |
|
"programming_language": str, |
|
"github_link": str, |
|
"open_source_license": str, |
|
"commit_date": str, |
|
"commit_author": str, |
|
}, |
|
"others": dict, |
|
} |
|
|
|
@staticmethod |
|
def get_document(dataset_id: str, document_id: str) -> Optional[Document]: |
|
document = ( |
|
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() |
|
) |
|
|
|
return document |
|
|
|
@staticmethod |
|
def get_document_by_id(document_id: str) -> Optional[Document]: |
|
document = db.session.query(Document).filter(Document.id == document_id).first() |
|
|
|
return document |
|
|
|
@staticmethod |
|
def get_document_by_dataset_id(dataset_id: str) -> list[Document]: |
|
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all() |
|
|
|
return documents |
|
|
|
@staticmethod |
|
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]: |
|
documents = ( |
|
db.session.query(Document) |
|
.filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"])) |
|
.all() |
|
) |
|
return documents |
|
|
|
@staticmethod |
|
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]: |
|
documents = ( |
|
db.session.query(Document) |
|
.filter( |
|
Document.batch == batch, |
|
Document.dataset_id == dataset_id, |
|
Document.tenant_id == current_user.current_tenant_id, |
|
) |
|
.all() |
|
) |
|
|
|
return documents |
|
|
|
@staticmethod |
|
def get_document_file_detail(file_id: str): |
|
file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none() |
|
return file_detail |
|
|
|
@staticmethod |
|
def check_archived(document): |
|
if document.archived: |
|
return True |
|
else: |
|
return False |
|
|
|
@staticmethod |
|
def delete_document(document): |
|
|
|
file_id = None |
|
if document.data_source_type == "upload_file": |
|
if document.data_source_info: |
|
data_source_info = document.data_source_info_dict |
|
if data_source_info and "upload_file_id" in data_source_info: |
|
file_id = data_source_info["upload_file_id"] |
|
document_was_deleted.send( |
|
document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id |
|
) |
|
|
|
db.session.delete(document) |
|
db.session.commit() |
|
|
|
@staticmethod |
|
def rename_document(dataset_id: str, document_id: str, name: str) -> Document: |
|
dataset = DatasetService.get_dataset(dataset_id) |
|
if not dataset: |
|
raise ValueError("Dataset not found.") |
|
|
|
document = DocumentService.get_document(dataset_id, document_id) |
|
|
|
if not document: |
|
raise ValueError("Document not found.") |
|
|
|
if document.tenant_id != current_user.current_tenant_id: |
|
raise ValueError("No permission.") |
|
|
|
document.name = name |
|
|
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
return document |
|
|
|
@staticmethod |
|
def pause_document(document): |
|
if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}: |
|
raise DocumentIndexingError() |
|
|
|
document.is_paused = True |
|
document.paused_by = current_user.id |
|
document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
|
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
indexing_cache_key = "document_{}_is_paused".format(document.id) |
|
redis_client.setnx(indexing_cache_key, "True") |
|
|
|
@staticmethod |
|
def recover_document(document): |
|
if not document.is_paused: |
|
raise DocumentIndexingError() |
|
|
|
document.is_paused = False |
|
document.paused_by = None |
|
document.paused_at = None |
|
|
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
indexing_cache_key = "document_{}_is_paused".format(document.id) |
|
redis_client.delete(indexing_cache_key) |
|
|
|
recover_document_indexing_task.delay(document.dataset_id, document.id) |
|
|
|
@staticmethod |
|
def retry_document(dataset_id: str, documents: list[Document]): |
|
for document in documents: |
|
|
|
retry_indexing_cache_key = "document_{}_is_retried".format(document.id) |
|
cache_result = redis_client.get(retry_indexing_cache_key) |
|
if cache_result is not None: |
|
raise ValueError("Document is being retried, please try again later") |
|
|
|
document.indexing_status = "waiting" |
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
redis_client.setex(retry_indexing_cache_key, 600, 1) |
|
|
|
document_ids = [document.id for document in documents] |
|
retry_document_indexing_task.delay(dataset_id, document_ids) |
|
|
|
@staticmethod |
|
def sync_website_document(dataset_id: str, document: Document): |
|
|
|
sync_indexing_cache_key = "document_{}_is_sync".format(document.id) |
|
cache_result = redis_client.get(sync_indexing_cache_key) |
|
if cache_result is not None: |
|
raise ValueError("Document is being synced, please try again later") |
|
|
|
document.indexing_status = "waiting" |
|
data_source_info = document.data_source_info_dict |
|
data_source_info["mode"] = "scrape" |
|
document.data_source_info = json.dumps(data_source_info, ensure_ascii=False) |
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
redis_client.setex(sync_indexing_cache_key, 600, 1) |
|
|
|
sync_website_document_indexing_task.delay(dataset_id, document.id) |
|
|
|
@staticmethod |
|
def get_documents_position(dataset_id): |
|
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first() |
|
if document: |
|
return document.position + 1 |
|
else: |
|
return 1 |
|
|
|
@staticmethod |
|
def save_document_with_dataset_id( |
|
dataset: Dataset, |
|
document_data: dict, |
|
account: Account | Any, |
|
dataset_process_rule: Optional[DatasetProcessRule] = None, |
|
created_from: str = "web", |
|
): |
|
|
|
features = FeatureService.get_features(current_user.current_tenant_id) |
|
|
|
if features.billing.enabled: |
|
if "original_document_id" not in document_data or not document_data["original_document_id"]: |
|
count = 0 |
|
if document_data["data_source"]["type"] == "upload_file": |
|
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] |
|
count = len(upload_file_list) |
|
elif document_data["data_source"]["type"] == "notion_import": |
|
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] |
|
for notion_info in notion_info_list: |
|
count = count + len(notion_info["pages"]) |
|
elif document_data["data_source"]["type"] == "website_crawl": |
|
website_info = document_data["data_source"]["info_list"]["website_info_list"] |
|
count = len(website_info["urls"]) |
|
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) |
|
if count > batch_upload_limit: |
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") |
|
|
|
DocumentService.check_documents_upload_quota(count, features) |
|
|
|
|
|
if not dataset.data_source_type: |
|
dataset.data_source_type = document_data["data_source"]["type"] |
|
|
|
if not dataset.indexing_technique: |
|
if ( |
|
"indexing_technique" not in document_data |
|
or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST |
|
): |
|
raise ValueError("Indexing technique is required") |
|
|
|
dataset.indexing_technique = document_data["indexing_technique"] |
|
if document_data["indexing_technique"] == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_default_model_instance( |
|
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING |
|
) |
|
dataset.embedding_model = embedding_model.model |
|
dataset.embedding_model_provider = embedding_model.provider |
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( |
|
embedding_model.provider, embedding_model.model |
|
) |
|
dataset.collection_binding_id = dataset_collection_binding.id |
|
if not dataset.retrieval_model: |
|
default_retrieval_model = { |
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value, |
|
"reranking_enable": False, |
|
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, |
|
"top_k": 2, |
|
"score_threshold_enabled": False, |
|
} |
|
|
|
dataset.retrieval_model = document_data.get("retrieval_model") or default_retrieval_model |
|
|
|
documents = [] |
|
if document_data.get("original_document_id"): |
|
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account) |
|
documents.append(document) |
|
batch = document.batch |
|
else: |
|
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999)) |
|
|
|
if not dataset_process_rule: |
|
process_rule = document_data["process_rule"] |
|
if process_rule["mode"] == "custom": |
|
dataset_process_rule = DatasetProcessRule( |
|
dataset_id=dataset.id, |
|
mode=process_rule["mode"], |
|
rules=json.dumps(process_rule["rules"]), |
|
created_by=account.id, |
|
) |
|
elif process_rule["mode"] == "automatic": |
|
dataset_process_rule = DatasetProcessRule( |
|
dataset_id=dataset.id, |
|
mode=process_rule["mode"], |
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), |
|
created_by=account.id, |
|
) |
|
db.session.add(dataset_process_rule) |
|
db.session.commit() |
|
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id) |
|
with redis_client.lock(lock_name, timeout=600): |
|
position = DocumentService.get_documents_position(dataset.id) |
|
document_ids = [] |
|
duplicate_document_ids = [] |
|
if document_data["data_source"]["type"] == "upload_file": |
|
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] |
|
for file_id in upload_file_list: |
|
file = ( |
|
db.session.query(UploadFile) |
|
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) |
|
.first() |
|
) |
|
|
|
|
|
if not file: |
|
raise FileNotExistsError() |
|
|
|
file_name = file.name |
|
data_source_info = { |
|
"upload_file_id": file_id, |
|
} |
|
|
|
if document_data.get("duplicate", False): |
|
document = Document.query.filter_by( |
|
dataset_id=dataset.id, |
|
tenant_id=current_user.current_tenant_id, |
|
data_source_type="upload_file", |
|
enabled=True, |
|
name=file_name, |
|
).first() |
|
if document: |
|
document.dataset_process_rule_id = dataset_process_rule.id |
|
document.updated_at = datetime.datetime.utcnow() |
|
document.created_from = created_from |
|
document.doc_form = document_data["doc_form"] |
|
document.doc_language = document_data["doc_language"] |
|
document.data_source_info = json.dumps(data_source_info) |
|
document.batch = batch |
|
document.indexing_status = "waiting" |
|
db.session.add(document) |
|
documents.append(document) |
|
duplicate_document_ids.append(document.id) |
|
continue |
|
document = DocumentService.build_document( |
|
dataset, |
|
dataset_process_rule.id, |
|
document_data["data_source"]["type"], |
|
document_data["doc_form"], |
|
document_data["doc_language"], |
|
data_source_info, |
|
created_from, |
|
position, |
|
account, |
|
file_name, |
|
batch, |
|
) |
|
db.session.add(document) |
|
db.session.flush() |
|
document_ids.append(document.id) |
|
documents.append(document) |
|
position += 1 |
|
elif document_data["data_source"]["type"] == "notion_import": |
|
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] |
|
exist_page_ids = [] |
|
exist_document = {} |
|
documents = Document.query.filter_by( |
|
dataset_id=dataset.id, |
|
tenant_id=current_user.current_tenant_id, |
|
data_source_type="notion_import", |
|
enabled=True, |
|
).all() |
|
if documents: |
|
for document in documents: |
|
data_source_info = json.loads(document.data_source_info) |
|
exist_page_ids.append(data_source_info["notion_page_id"]) |
|
exist_document[data_source_info["notion_page_id"]] = document.id |
|
for notion_info in notion_info_list: |
|
workspace_id = notion_info["workspace_id"] |
|
data_source_binding = DataSourceOauthBinding.query.filter( |
|
db.and_( |
|
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, |
|
DataSourceOauthBinding.provider == "notion", |
|
DataSourceOauthBinding.disabled == False, |
|
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', |
|
) |
|
).first() |
|
if not data_source_binding: |
|
raise ValueError("Data source binding not found.") |
|
for page in notion_info["pages"]: |
|
if page["page_id"] not in exist_page_ids: |
|
data_source_info = { |
|
"notion_workspace_id": workspace_id, |
|
"notion_page_id": page["page_id"], |
|
"notion_page_icon": page["page_icon"], |
|
"type": page["type"], |
|
} |
|
document = DocumentService.build_document( |
|
dataset, |
|
dataset_process_rule.id, |
|
document_data["data_source"]["type"], |
|
document_data["doc_form"], |
|
document_data["doc_language"], |
|
data_source_info, |
|
created_from, |
|
position, |
|
account, |
|
page["page_name"], |
|
batch, |
|
) |
|
db.session.add(document) |
|
db.session.flush() |
|
document_ids.append(document.id) |
|
documents.append(document) |
|
position += 1 |
|
else: |
|
exist_document.pop(page["page_id"]) |
|
|
|
if len(exist_document) > 0: |
|
clean_notion_document_task.delay(list(exist_document.values()), dataset.id) |
|
elif document_data["data_source"]["type"] == "website_crawl": |
|
website_info = document_data["data_source"]["info_list"]["website_info_list"] |
|
urls = website_info["urls"] |
|
for url in urls: |
|
data_source_info = { |
|
"url": url, |
|
"provider": website_info["provider"], |
|
"job_id": website_info["job_id"], |
|
"only_main_content": website_info.get("only_main_content", False), |
|
"mode": "crawl", |
|
} |
|
if len(url) > 255: |
|
document_name = url[:200] + "..." |
|
else: |
|
document_name = url |
|
document = DocumentService.build_document( |
|
dataset, |
|
dataset_process_rule.id, |
|
document_data["data_source"]["type"], |
|
document_data["doc_form"], |
|
document_data["doc_language"], |
|
data_source_info, |
|
created_from, |
|
position, |
|
account, |
|
document_name, |
|
batch, |
|
) |
|
db.session.add(document) |
|
db.session.flush() |
|
document_ids.append(document.id) |
|
documents.append(document) |
|
position += 1 |
|
db.session.commit() |
|
|
|
|
|
if document_ids: |
|
document_indexing_task.delay(dataset.id, document_ids) |
|
if duplicate_document_ids: |
|
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids) |
|
|
|
return documents, batch |
|
|
|
@staticmethod |
|
def check_documents_upload_quota(count: int, features: FeatureModel): |
|
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size |
|
if count > can_upload_size: |
|
raise ValueError( |
|
f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded." |
|
) |
|
|
|
@staticmethod |
|
def build_document( |
|
dataset: Dataset, |
|
process_rule_id: str, |
|
data_source_type: str, |
|
document_form: str, |
|
document_language: str, |
|
data_source_info: dict, |
|
created_from: str, |
|
position: int, |
|
account: Account, |
|
name: str, |
|
batch: str, |
|
): |
|
document = Document( |
|
tenant_id=dataset.tenant_id, |
|
dataset_id=dataset.id, |
|
position=position, |
|
data_source_type=data_source_type, |
|
data_source_info=json.dumps(data_source_info), |
|
dataset_process_rule_id=process_rule_id, |
|
batch=batch, |
|
name=name, |
|
created_from=created_from, |
|
created_by=account.id, |
|
doc_form=document_form, |
|
doc_language=document_language, |
|
) |
|
return document |
|
|
|
@staticmethod |
|
def get_tenant_documents_count(): |
|
documents_count = Document.query.filter( |
|
Document.completed_at.isnot(None), |
|
Document.enabled == True, |
|
Document.archived == False, |
|
Document.tenant_id == current_user.current_tenant_id, |
|
).count() |
|
return documents_count |
|
|
|
@staticmethod |
|
def update_document_with_dataset_id( |
|
dataset: Dataset, |
|
document_data: dict, |
|
account: Account, |
|
dataset_process_rule: Optional[DatasetProcessRule] = None, |
|
created_from: str = "web", |
|
): |
|
DatasetService.check_dataset_model_setting(dataset) |
|
document = DocumentService.get_document(dataset.id, document_data["original_document_id"]) |
|
if document is None: |
|
raise NotFound("Document not found") |
|
if document.display_status != "available": |
|
raise ValueError("Document is not available") |
|
|
|
if document_data.get("process_rule"): |
|
process_rule = document_data["process_rule"] |
|
if process_rule["mode"] == "custom": |
|
dataset_process_rule = DatasetProcessRule( |
|
dataset_id=dataset.id, |
|
mode=process_rule["mode"], |
|
rules=json.dumps(process_rule["rules"]), |
|
created_by=account.id, |
|
) |
|
elif process_rule["mode"] == "automatic": |
|
dataset_process_rule = DatasetProcessRule( |
|
dataset_id=dataset.id, |
|
mode=process_rule["mode"], |
|
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), |
|
created_by=account.id, |
|
) |
|
db.session.add(dataset_process_rule) |
|
db.session.commit() |
|
document.dataset_process_rule_id = dataset_process_rule.id |
|
|
|
if document_data.get("data_source"): |
|
file_name = "" |
|
data_source_info = {} |
|
if document_data["data_source"]["type"] == "upload_file": |
|
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] |
|
for file_id in upload_file_list: |
|
file = ( |
|
db.session.query(UploadFile) |
|
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) |
|
.first() |
|
) |
|
|
|
|
|
if not file: |
|
raise FileNotExistsError() |
|
|
|
file_name = file.name |
|
data_source_info = { |
|
"upload_file_id": file_id, |
|
} |
|
elif document_data["data_source"]["type"] == "notion_import": |
|
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] |
|
for notion_info in notion_info_list: |
|
workspace_id = notion_info["workspace_id"] |
|
data_source_binding = DataSourceOauthBinding.query.filter( |
|
db.and_( |
|
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, |
|
DataSourceOauthBinding.provider == "notion", |
|
DataSourceOauthBinding.disabled == False, |
|
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', |
|
) |
|
).first() |
|
if not data_source_binding: |
|
raise ValueError("Data source binding not found.") |
|
for page in notion_info["pages"]: |
|
data_source_info = { |
|
"notion_workspace_id": workspace_id, |
|
"notion_page_id": page["page_id"], |
|
"notion_page_icon": page["page_icon"], |
|
"type": page["type"], |
|
} |
|
elif document_data["data_source"]["type"] == "website_crawl": |
|
website_info = document_data["data_source"]["info_list"]["website_info_list"] |
|
urls = website_info["urls"] |
|
for url in urls: |
|
data_source_info = { |
|
"url": url, |
|
"provider": website_info["provider"], |
|
"job_id": website_info["job_id"], |
|
"only_main_content": website_info.get("only_main_content", False), |
|
"mode": "crawl", |
|
} |
|
document.data_source_type = document_data["data_source"]["type"] |
|
document.data_source_info = json.dumps(data_source_info) |
|
document.name = file_name |
|
|
|
|
|
if document_data.get("name"): |
|
document.name = document_data["name"] |
|
|
|
document.indexing_status = "waiting" |
|
document.completed_at = None |
|
document.processing_started_at = None |
|
document.parsing_completed_at = None |
|
document.cleaning_completed_at = None |
|
document.splitting_completed_at = None |
|
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
document.created_from = created_from |
|
document.doc_form = document_data["doc_form"] |
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
update_params = {DocumentSegment.status: "re_segment"} |
|
DocumentSegment.query.filter_by(document_id=document.id).update(update_params) |
|
db.session.commit() |
|
|
|
document_indexing_update_task.delay(document.dataset_id, document.id) |
|
return document |
|
|
|
@staticmethod |
|
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account): |
|
features = FeatureService.get_features(current_user.current_tenant_id) |
|
|
|
if features.billing.enabled: |
|
count = 0 |
|
if document_data["data_source"]["type"] == "upload_file": |
|
upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] |
|
count = len(upload_file_list) |
|
elif document_data["data_source"]["type"] == "notion_import": |
|
notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] |
|
for notion_info in notion_info_list: |
|
count = count + len(notion_info["pages"]) |
|
elif document_data["data_source"]["type"] == "website_crawl": |
|
website_info = document_data["data_source"]["info_list"]["website_info_list"] |
|
count = len(website_info["urls"]) |
|
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) |
|
if count > batch_upload_limit: |
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") |
|
|
|
DocumentService.check_documents_upload_quota(count, features) |
|
|
|
dataset_collection_binding_id = None |
|
retrieval_model = None |
|
if document_data["indexing_technique"] == "high_quality": |
|
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( |
|
document_data["embedding_model_provider"], document_data["embedding_model"] |
|
) |
|
dataset_collection_binding_id = dataset_collection_binding.id |
|
if document_data.get("retrieval_model"): |
|
retrieval_model = document_data["retrieval_model"] |
|
else: |
|
default_retrieval_model = { |
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value, |
|
"reranking_enable": False, |
|
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, |
|
"top_k": 2, |
|
"score_threshold_enabled": False, |
|
} |
|
retrieval_model = default_retrieval_model |
|
|
|
dataset = Dataset( |
|
tenant_id=tenant_id, |
|
name="", |
|
data_source_type=document_data["data_source"]["type"], |
|
indexing_technique=document_data.get("indexing_technique", "high_quality"), |
|
created_by=account.id, |
|
embedding_model=document_data.get("embedding_model"), |
|
embedding_model_provider=document_data.get("embedding_model_provider"), |
|
collection_binding_id=dataset_collection_binding_id, |
|
retrieval_model=retrieval_model, |
|
) |
|
|
|
db.session.add(dataset) |
|
db.session.flush() |
|
|
|
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account) |
|
|
|
cut_length = 18 |
|
cut_name = documents[0].name[:cut_length] |
|
dataset.name = cut_name + "..." |
|
dataset.description = "useful for when you want to answer queries about the " + documents[0].name |
|
db.session.commit() |
|
|
|
return dataset, documents, batch |
|
|
|
@classmethod |
|
def document_create_args_validate(cls, args: dict): |
|
if "original_document_id" not in args or not args["original_document_id"]: |
|
DocumentService.data_source_args_validate(args) |
|
DocumentService.process_rule_args_validate(args) |
|
else: |
|
if ("data_source" not in args or not args["data_source"]) and ( |
|
"process_rule" not in args or not args["process_rule"] |
|
): |
|
raise ValueError("Data source or Process rule is required") |
|
else: |
|
if args.get("data_source"): |
|
DocumentService.data_source_args_validate(args) |
|
if args.get("process_rule"): |
|
DocumentService.process_rule_args_validate(args) |
|
|
|
@classmethod |
|
def data_source_args_validate(cls, args: dict): |
|
if "data_source" not in args or not args["data_source"]: |
|
raise ValueError("Data source is required") |
|
|
|
if not isinstance(args["data_source"], dict): |
|
raise ValueError("Data source is invalid") |
|
|
|
if "type" not in args["data_source"] or not args["data_source"]["type"]: |
|
raise ValueError("Data source type is required") |
|
|
|
if args["data_source"]["type"] not in Document.DATA_SOURCES: |
|
raise ValueError("Data source type is invalid") |
|
|
|
if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]: |
|
raise ValueError("Data source info is required") |
|
|
|
if args["data_source"]["type"] == "upload_file": |
|
if ( |
|
"file_info_list" not in args["data_source"]["info_list"] |
|
or not args["data_source"]["info_list"]["file_info_list"] |
|
): |
|
raise ValueError("File source info is required") |
|
if args["data_source"]["type"] == "notion_import": |
|
if ( |
|
"notion_info_list" not in args["data_source"]["info_list"] |
|
or not args["data_source"]["info_list"]["notion_info_list"] |
|
): |
|
raise ValueError("Notion source info is required") |
|
if args["data_source"]["type"] == "website_crawl": |
|
if ( |
|
"website_info_list" not in args["data_source"]["info_list"] |
|
or not args["data_source"]["info_list"]["website_info_list"] |
|
): |
|
raise ValueError("Website source info is required") |
|
|
|
@classmethod |
|
def process_rule_args_validate(cls, args: dict): |
|
if "process_rule" not in args or not args["process_rule"]: |
|
raise ValueError("Process rule is required") |
|
|
|
if not isinstance(args["process_rule"], dict): |
|
raise ValueError("Process rule is invalid") |
|
|
|
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: |
|
raise ValueError("Process rule mode is required") |
|
|
|
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: |
|
raise ValueError("Process rule mode is invalid") |
|
|
|
if args["process_rule"]["mode"] == "automatic": |
|
args["process_rule"]["rules"] = {} |
|
else: |
|
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: |
|
raise ValueError("Process rule rules is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"], dict): |
|
raise ValueError("Process rule rules is invalid") |
|
|
|
if ( |
|
"pre_processing_rules" not in args["process_rule"]["rules"] |
|
or args["process_rule"]["rules"]["pre_processing_rules"] is None |
|
): |
|
raise ValueError("Process rule pre_processing_rules is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): |
|
raise ValueError("Process rule pre_processing_rules is invalid") |
|
|
|
unique_pre_processing_rule_dicts = {} |
|
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: |
|
if "id" not in pre_processing_rule or not pre_processing_rule["id"]: |
|
raise ValueError("Process rule pre_processing_rules id is required") |
|
|
|
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: |
|
raise ValueError("Process rule pre_processing_rules id is invalid") |
|
|
|
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: |
|
raise ValueError("Process rule pre_processing_rules enabled is required") |
|
|
|
if not isinstance(pre_processing_rule["enabled"], bool): |
|
raise ValueError("Process rule pre_processing_rules enabled is invalid") |
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule |
|
|
|
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) |
|
|
|
if ( |
|
"segmentation" not in args["process_rule"]["rules"] |
|
or args["process_rule"]["rules"]["segmentation"] is None |
|
): |
|
raise ValueError("Process rule segmentation is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): |
|
raise ValueError("Process rule segmentation is invalid") |
|
|
|
if ( |
|
"separator" not in args["process_rule"]["rules"]["segmentation"] |
|
or not args["process_rule"]["rules"]["segmentation"]["separator"] |
|
): |
|
raise ValueError("Process rule segmentation separator is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): |
|
raise ValueError("Process rule segmentation separator is invalid") |
|
|
|
if ( |
|
"max_tokens" not in args["process_rule"]["rules"]["segmentation"] |
|
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] |
|
): |
|
raise ValueError("Process rule segmentation max_tokens is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): |
|
raise ValueError("Process rule segmentation max_tokens is invalid") |
|
|
|
@classmethod |
|
def estimate_args_validate(cls, args: dict): |
|
if "info_list" not in args or not args["info_list"]: |
|
raise ValueError("Data source info is required") |
|
|
|
if not isinstance(args["info_list"], dict): |
|
raise ValueError("Data info is invalid") |
|
|
|
if "process_rule" not in args or not args["process_rule"]: |
|
raise ValueError("Process rule is required") |
|
|
|
if not isinstance(args["process_rule"], dict): |
|
raise ValueError("Process rule is invalid") |
|
|
|
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: |
|
raise ValueError("Process rule mode is required") |
|
|
|
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: |
|
raise ValueError("Process rule mode is invalid") |
|
|
|
if args["process_rule"]["mode"] == "automatic": |
|
args["process_rule"]["rules"] = {} |
|
else: |
|
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: |
|
raise ValueError("Process rule rules is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"], dict): |
|
raise ValueError("Process rule rules is invalid") |
|
|
|
if ( |
|
"pre_processing_rules" not in args["process_rule"]["rules"] |
|
or args["process_rule"]["rules"]["pre_processing_rules"] is None |
|
): |
|
raise ValueError("Process rule pre_processing_rules is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): |
|
raise ValueError("Process rule pre_processing_rules is invalid") |
|
|
|
unique_pre_processing_rule_dicts = {} |
|
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: |
|
if "id" not in pre_processing_rule or not pre_processing_rule["id"]: |
|
raise ValueError("Process rule pre_processing_rules id is required") |
|
|
|
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: |
|
raise ValueError("Process rule pre_processing_rules id is invalid") |
|
|
|
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: |
|
raise ValueError("Process rule pre_processing_rules enabled is required") |
|
|
|
if not isinstance(pre_processing_rule["enabled"], bool): |
|
raise ValueError("Process rule pre_processing_rules enabled is invalid") |
|
|
|
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule |
|
|
|
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) |
|
|
|
if ( |
|
"segmentation" not in args["process_rule"]["rules"] |
|
or args["process_rule"]["rules"]["segmentation"] is None |
|
): |
|
raise ValueError("Process rule segmentation is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): |
|
raise ValueError("Process rule segmentation is invalid") |
|
|
|
if ( |
|
"separator" not in args["process_rule"]["rules"]["segmentation"] |
|
or not args["process_rule"]["rules"]["segmentation"]["separator"] |
|
): |
|
raise ValueError("Process rule segmentation separator is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): |
|
raise ValueError("Process rule segmentation separator is invalid") |
|
|
|
if ( |
|
"max_tokens" not in args["process_rule"]["rules"]["segmentation"] |
|
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] |
|
): |
|
raise ValueError("Process rule segmentation max_tokens is required") |
|
|
|
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): |
|
raise ValueError("Process rule segmentation max_tokens is invalid") |
|
|
|
|
|
class SegmentService: |
|
@classmethod |
|
def segment_create_args_validate(cls, args: dict, document: Document): |
|
if document.doc_form == "qa_model": |
|
if "answer" not in args or not args["answer"]: |
|
raise ValueError("Answer is required") |
|
if not args["answer"].strip(): |
|
raise ValueError("Answer is empty") |
|
if "content" not in args or not args["content"] or not args["content"].strip(): |
|
raise ValueError("Content is empty") |
|
|
|
@classmethod |
|
def create_segment(cls, args: dict, document: Document, dataset: Dataset): |
|
content = args["content"] |
|
doc_id = str(uuid.uuid4()) |
|
segment_hash = helper.generate_text_hash(content) |
|
tokens = 0 |
|
if dataset.indexing_technique == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=current_user.current_tenant_id, |
|
provider=dataset.embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=dataset.embedding_model, |
|
) |
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) |
|
lock_name = "add_segment_lock_document_id_{}".format(document.id) |
|
with redis_client.lock(lock_name, timeout=600): |
|
max_position = ( |
|
db.session.query(func.max(DocumentSegment.position)) |
|
.filter(DocumentSegment.document_id == document.id) |
|
.scalar() |
|
) |
|
segment_document = DocumentSegment( |
|
tenant_id=current_user.current_tenant_id, |
|
dataset_id=document.dataset_id, |
|
document_id=document.id, |
|
index_node_id=doc_id, |
|
index_node_hash=segment_hash, |
|
position=max_position + 1 if max_position else 1, |
|
content=content, |
|
word_count=len(content), |
|
tokens=tokens, |
|
status="completed", |
|
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
created_by=current_user.id, |
|
) |
|
if document.doc_form == "qa_model": |
|
segment_document.answer = args["answer"] |
|
|
|
db.session.add(segment_document) |
|
db.session.commit() |
|
|
|
|
|
try: |
|
VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset) |
|
except Exception as e: |
|
logging.exception("create segment index failed") |
|
segment_document.enabled = False |
|
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment_document.status = "error" |
|
segment_document.error = str(e) |
|
db.session.commit() |
|
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first() |
|
return segment |
|
|
|
@classmethod |
|
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset): |
|
lock_name = "multi_add_segment_lock_document_id_{}".format(document.id) |
|
with redis_client.lock(lock_name, timeout=600): |
|
embedding_model = None |
|
if dataset.indexing_technique == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=current_user.current_tenant_id, |
|
provider=dataset.embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=dataset.embedding_model, |
|
) |
|
max_position = ( |
|
db.session.query(func.max(DocumentSegment.position)) |
|
.filter(DocumentSegment.document_id == document.id) |
|
.scalar() |
|
) |
|
pre_segment_data_list = [] |
|
segment_data_list = [] |
|
keywords_list = [] |
|
for segment_item in segments: |
|
content = segment_item["content"] |
|
doc_id = str(uuid.uuid4()) |
|
segment_hash = helper.generate_text_hash(content) |
|
tokens = 0 |
|
if dataset.indexing_technique == "high_quality" and embedding_model: |
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) |
|
segment_document = DocumentSegment( |
|
tenant_id=current_user.current_tenant_id, |
|
dataset_id=document.dataset_id, |
|
document_id=document.id, |
|
index_node_id=doc_id, |
|
index_node_hash=segment_hash, |
|
position=max_position + 1 if max_position else 1, |
|
content=content, |
|
word_count=len(content), |
|
tokens=tokens, |
|
status="completed", |
|
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
created_by=current_user.id, |
|
) |
|
if document.doc_form == "qa_model": |
|
segment_document.answer = segment_item["answer"] |
|
db.session.add(segment_document) |
|
segment_data_list.append(segment_document) |
|
|
|
pre_segment_data_list.append(segment_document) |
|
if "keywords" in segment_item: |
|
keywords_list.append(segment_item["keywords"]) |
|
else: |
|
keywords_list.append(None) |
|
|
|
try: |
|
|
|
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset) |
|
except Exception as e: |
|
logging.exception("create segment index failed") |
|
for segment_document in segment_data_list: |
|
segment_document.enabled = False |
|
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment_document.status = "error" |
|
segment_document.error = str(e) |
|
db.session.commit() |
|
return segment_data_list |
|
|
|
@classmethod |
|
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset): |
|
indexing_cache_key = "segment_{}_indexing".format(segment.id) |
|
cache_result = redis_client.get(indexing_cache_key) |
|
if cache_result is not None: |
|
raise ValueError("Segment is indexing, please try again later") |
|
if "enabled" in args and args["enabled"] is not None: |
|
action = args["enabled"] |
|
if segment.enabled != action: |
|
if not action: |
|
segment.enabled = action |
|
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment.disabled_by = current_user.id |
|
db.session.add(segment) |
|
db.session.commit() |
|
|
|
redis_client.setex(indexing_cache_key, 600, 1) |
|
disable_segment_from_index_task.delay(segment.id) |
|
return segment |
|
if not segment.enabled: |
|
if "enabled" in args and args["enabled"] is not None: |
|
if not args["enabled"]: |
|
raise ValueError("Can't update disabled segment") |
|
else: |
|
raise ValueError("Can't update disabled segment") |
|
try: |
|
content = args["content"] |
|
if segment.content == content: |
|
if document.doc_form == "qa_model": |
|
segment.answer = args["answer"] |
|
if args.get("keywords"): |
|
segment.keywords = args["keywords"] |
|
segment.enabled = True |
|
segment.disabled_at = None |
|
segment.disabled_by = None |
|
db.session.add(segment) |
|
db.session.commit() |
|
|
|
if "keywords" in args: |
|
keyword = Keyword(dataset) |
|
keyword.delete_by_ids([segment.index_node_id]) |
|
document = RAGDocument( |
|
page_content=segment.content, |
|
metadata={ |
|
"doc_id": segment.index_node_id, |
|
"doc_hash": segment.index_node_hash, |
|
"document_id": segment.document_id, |
|
"dataset_id": segment.dataset_id, |
|
}, |
|
) |
|
keyword.add_texts([document], keywords_list=[args["keywords"]]) |
|
else: |
|
segment_hash = helper.generate_text_hash(content) |
|
tokens = 0 |
|
if dataset.indexing_technique == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=current_user.current_tenant_id, |
|
provider=dataset.embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=dataset.embedding_model, |
|
) |
|
|
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) |
|
segment.content = content |
|
segment.index_node_hash = segment_hash |
|
segment.word_count = len(content) |
|
segment.tokens = tokens |
|
segment.status = "completed" |
|
segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment.updated_by = current_user.id |
|
segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment.enabled = True |
|
segment.disabled_at = None |
|
segment.disabled_by = None |
|
if document.doc_form == "qa_model": |
|
segment.answer = args["answer"] |
|
db.session.add(segment) |
|
db.session.commit() |
|
|
|
VectorService.update_segment_vector(args["keywords"], segment, dataset) |
|
|
|
except Exception as e: |
|
logging.exception("update segment index failed") |
|
segment.enabled = False |
|
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) |
|
segment.status = "error" |
|
segment.error = str(e) |
|
db.session.commit() |
|
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first() |
|
return segment |
|
|
|
@classmethod |
|
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset): |
|
indexing_cache_key = "segment_{}_delete_indexing".format(segment.id) |
|
cache_result = redis_client.get(indexing_cache_key) |
|
if cache_result is not None: |
|
raise ValueError("Segment is deleting.") |
|
|
|
|
|
if segment.enabled: |
|
|
|
redis_client.setex(indexing_cache_key, 600, 1) |
|
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id) |
|
db.session.delete(segment) |
|
db.session.commit() |
|
|
|
|
|
class DatasetCollectionBindingService: |
|
@classmethod |
|
def get_dataset_collection_binding( |
|
cls, provider_name: str, model_name: str, collection_type: str = "dataset" |
|
) -> DatasetCollectionBinding: |
|
dataset_collection_binding = ( |
|
db.session.query(DatasetCollectionBinding) |
|
.filter( |
|
DatasetCollectionBinding.provider_name == provider_name, |
|
DatasetCollectionBinding.model_name == model_name, |
|
DatasetCollectionBinding.type == collection_type, |
|
) |
|
.order_by(DatasetCollectionBinding.created_at) |
|
.first() |
|
) |
|
|
|
if not dataset_collection_binding: |
|
dataset_collection_binding = DatasetCollectionBinding( |
|
provider_name=provider_name, |
|
model_name=model_name, |
|
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())), |
|
type=collection_type, |
|
) |
|
db.session.add(dataset_collection_binding) |
|
db.session.commit() |
|
return dataset_collection_binding |
|
|
|
@classmethod |
|
def get_dataset_collection_binding_by_id_and_type( |
|
cls, collection_binding_id: str, collection_type: str = "dataset" |
|
) -> DatasetCollectionBinding: |
|
dataset_collection_binding = ( |
|
db.session.query(DatasetCollectionBinding) |
|
.filter( |
|
DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type |
|
) |
|
.order_by(DatasetCollectionBinding.created_at) |
|
.first() |
|
) |
|
|
|
return dataset_collection_binding |
|
|
|
|
|
class DatasetPermissionService: |
|
@classmethod |
|
def get_dataset_partial_member_list(cls, dataset_id): |
|
user_list_query = ( |
|
db.session.query( |
|
DatasetPermission.account_id, |
|
) |
|
.filter(DatasetPermission.dataset_id == dataset_id) |
|
.all() |
|
) |
|
|
|
user_list = [] |
|
for user in user_list_query: |
|
user_list.append(user.account_id) |
|
|
|
return user_list |
|
|
|
@classmethod |
|
def update_partial_member_list(cls, tenant_id, dataset_id, user_list): |
|
try: |
|
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() |
|
permissions = [] |
|
for user in user_list: |
|
permission = DatasetPermission( |
|
tenant_id=tenant_id, |
|
dataset_id=dataset_id, |
|
account_id=user["user_id"], |
|
) |
|
permissions.append(permission) |
|
|
|
db.session.add_all(permissions) |
|
db.session.commit() |
|
except Exception as e: |
|
db.session.rollback() |
|
raise e |
|
|
|
@classmethod |
|
def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list): |
|
if not user.is_dataset_editor: |
|
raise NoPermissionError("User does not have permission to edit this dataset.") |
|
|
|
if user.is_dataset_operator and dataset.permission != requested_permission: |
|
raise NoPermissionError("Dataset operators cannot change the dataset permissions.") |
|
|
|
if user.is_dataset_operator and requested_permission == "partial_members": |
|
if not requested_partial_member_list: |
|
raise ValueError("Partial member list is required when setting to partial members.") |
|
|
|
local_member_list = cls.get_dataset_partial_member_list(dataset.id) |
|
request_member_list = [user["user_id"] for user in requested_partial_member_list] |
|
if set(local_member_list) != set(request_member_list): |
|
raise ValueError("Dataset operators cannot change the dataset permissions.") |
|
|
|
@classmethod |
|
def clear_partial_member_list(cls, dataset_id): |
|
try: |
|
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() |
|
db.session.commit() |
|
except Exception as e: |
|
db.session.rollback() |
|
raise e |
|
|