Severian's picture
initial commit
a8b3f00
raw
history blame
9.28 kB
from flask_login import current_user
from flask_restful import marshal, reqparse
from werkzeug.exceptions import NotFound
from controllers.service_api import api
from controllers.service_api.app.error import ProviderNotInitializeError
from controllers.service_api.wraps import (
DatasetApiResource,
cloud_edition_billing_knowledge_limit_check,
cloud_edition_billing_resource_check,
)
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from fields.segment_fields import segment_fields
from models.dataset import Dataset, DocumentSegment
from services.dataset_service import DatasetService, DocumentService, SegmentService
class SegmentApi(DatasetApiResource):
"""Resource for segments."""
@cloud_edition_billing_resource_check("vector_space", "dataset")
@cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
def post(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
if document.indexing_status != "completed":
raise NotFound("Document is not completed.")
if not document.enabled:
raise NotFound("Document is disabled.")
# check embedding model setting
if dataset.indexing_technique == "high_quality":
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
parser = reqparse.RequestParser()
parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
args = parser.parse_args()
if args["segments"] is not None:
for args_item in args["segments"]:
SegmentService.segment_create_args_validate(args_item, document)
segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
else:
return {"error": "Segments is required"}, 400
def get(self, tenant_id, dataset_id, document_id):
"""Create single segment."""
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
# check embedding model setting
if dataset.indexing_technique == "high_quality":
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
parser = reqparse.RequestParser()
parser.add_argument("status", type=str, action="append", default=[], location="args")
parser.add_argument("keyword", type=str, default=None, location="args")
args = parser.parse_args()
status_list = args["status"]
keyword = args["keyword"]
query = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
)
if status_list:
query = query.filter(DocumentSegment.status.in_(status_list))
if keyword:
query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
total = query.count()
segments = query.order_by(DocumentSegment.position).all()
return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200
class DatasetSegmentApi(DatasetApiResource):
def delete(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound("Document not found.")
# check segment
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound("Segment not found.")
SegmentService.delete_segment(segment, document, dataset)
return {"result": "success"}, 200
@cloud_edition_billing_resource_check("vector_space", "dataset")
def post(self, tenant_id, dataset_id, document_id, segment_id):
# check dataset
dataset_id = str(dataset_id)
tenant_id = str(tenant_id)
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
if not dataset:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound("Document not found.")
if dataset.indexing_technique == "high_quality":
# check embedding model setting
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
).first()
if not segment:
raise NotFound("Segment not found.")
# validate args
parser = reqparse.RequestParser()
parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
args = parser.parse_args()
SegmentService.segment_create_args_validate(args["segment"], document)
segment = SegmentService.update_segment(args["segment"], segment, document, dataset)
return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
api.add_resource(
DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
)