|
import logging |
|
import os |
|
from collections.abc import Callable, Generator, Iterable, Sequence |
|
from typing import IO, Any, Optional, Union, cast |
|
|
|
from core.entities.embedding_type import EmbeddingInputType |
|
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle |
|
from core.entities.provider_entities import ModelLoadBalancingConfiguration |
|
from core.errors.error import ProviderTokenNotInitError |
|
from core.model_runtime.callbacks.base_callback import Callback |
|
from core.model_runtime.entities.llm_entities import LLMResult |
|
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool |
|
from core.model_runtime.entities.model_entities import ModelType |
|
from core.model_runtime.entities.rerank_entities import RerankResult |
|
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult |
|
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError |
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel |
|
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel |
|
from core.model_runtime.model_providers.__base.rerank_model import RerankModel |
|
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel |
|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel |
|
from core.model_runtime.model_providers.__base.tts_model import TTSModel |
|
from core.provider_manager import ProviderManager |
|
from extensions.ext_redis import redis_client |
|
from models.provider import ProviderType |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ModelInstance: |
|
""" |
|
Model instance class |
|
""" |
|
|
|
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None: |
|
self.provider_model_bundle = provider_model_bundle |
|
self.model = model |
|
self.provider = provider_model_bundle.configuration.provider.provider |
|
self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model) |
|
self.model_type_instance = self.provider_model_bundle.model_type_instance |
|
self.load_balancing_manager = self._get_load_balancing_manager( |
|
configuration=provider_model_bundle.configuration, |
|
model_type=provider_model_bundle.model_type_instance.model_type, |
|
model=model, |
|
credentials=self.credentials, |
|
) |
|
|
|
@staticmethod |
|
def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict: |
|
""" |
|
Fetch credentials from provider model bundle |
|
:param provider_model_bundle: provider model bundle |
|
:param model: model name |
|
:return: |
|
""" |
|
configuration = provider_model_bundle.configuration |
|
model_type = provider_model_bundle.model_type_instance.model_type |
|
credentials = configuration.get_current_credentials(model_type=model_type, model=model) |
|
|
|
if credentials is None: |
|
raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.") |
|
|
|
return credentials |
|
|
|
@staticmethod |
|
def _get_load_balancing_manager( |
|
configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict |
|
) -> Optional["LBModelManager"]: |
|
""" |
|
Get load balancing model credentials |
|
:param configuration: provider configuration |
|
:param model_type: model type |
|
:param model: model name |
|
:param credentials: model credentials |
|
:return: |
|
""" |
|
if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM: |
|
current_model_setting = None |
|
|
|
for model_setting in configuration.model_settings: |
|
if model_setting.model_type == model_type and model_setting.model == model: |
|
current_model_setting = model_setting |
|
break |
|
|
|
|
|
if current_model_setting and current_model_setting.load_balancing_configs: |
|
|
|
lb_model_manager = LBModelManager( |
|
tenant_id=configuration.tenant_id, |
|
provider=configuration.provider.provider, |
|
model_type=model_type, |
|
model=model, |
|
load_balancing_configs=current_model_setting.load_balancing_configs, |
|
managed_credentials=credentials if configuration.custom_configuration.provider else None, |
|
) |
|
|
|
return lb_model_manager |
|
|
|
return None |
|
|
|
def invoke_llm( |
|
self, |
|
prompt_messages: list[PromptMessage], |
|
model_parameters: Optional[dict] = None, |
|
tools: Sequence[PromptMessageTool] | None = None, |
|
stop: Optional[list[str]] = None, |
|
stream: bool = True, |
|
user: Optional[str] = None, |
|
callbacks: Optional[list[Callback]] = None, |
|
) -> Union[LLMResult, Generator]: |
|
""" |
|
Invoke large language model |
|
|
|
:param prompt_messages: prompt messages |
|
:param model_parameters: model parameters |
|
:param tools: tools for tool calling |
|
:param stop: stop words |
|
:param stream: is stream response |
|
:param user: unique user id |
|
:param callbacks: callbacks |
|
:return: full response or stream response chunk generator result |
|
""" |
|
if not isinstance(self.model_type_instance, LargeLanguageModel): |
|
raise Exception("Model type instance is not LargeLanguageModel") |
|
|
|
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
prompt_messages=prompt_messages, |
|
model_parameters=model_parameters, |
|
tools=tools, |
|
stop=stop, |
|
stream=stream, |
|
user=user, |
|
callbacks=callbacks, |
|
) |
|
|
|
def get_llm_num_tokens( |
|
self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None |
|
) -> int: |
|
""" |
|
Get number of tokens for llm |
|
|
|
:param prompt_messages: prompt messages |
|
:param tools: tools for tool calling |
|
:return: |
|
""" |
|
if not isinstance(self.model_type_instance, LargeLanguageModel): |
|
raise Exception("Model type instance is not LargeLanguageModel") |
|
|
|
self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.get_num_tokens, |
|
model=self.model, |
|
credentials=self.credentials, |
|
prompt_messages=prompt_messages, |
|
tools=tools, |
|
) |
|
|
|
def invoke_text_embedding( |
|
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT |
|
) -> TextEmbeddingResult: |
|
""" |
|
Invoke large language model |
|
|
|
:param texts: texts to embed |
|
:param user: unique user id |
|
:param input_type: input type |
|
:return: embeddings result |
|
""" |
|
if not isinstance(self.model_type_instance, TextEmbeddingModel): |
|
raise Exception("Model type instance is not TextEmbeddingModel") |
|
|
|
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
texts=texts, |
|
user=user, |
|
input_type=input_type, |
|
) |
|
|
|
def get_text_embedding_num_tokens(self, texts: list[str]) -> int: |
|
""" |
|
Get number of tokens for text embedding |
|
|
|
:param texts: texts to embed |
|
:return: |
|
""" |
|
if not isinstance(self.model_type_instance, TextEmbeddingModel): |
|
raise Exception("Model type instance is not TextEmbeddingModel") |
|
|
|
self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.get_num_tokens, |
|
model=self.model, |
|
credentials=self.credentials, |
|
texts=texts, |
|
) |
|
|
|
def invoke_rerank( |
|
self, |
|
query: str, |
|
docs: list[str], |
|
score_threshold: Optional[float] = None, |
|
top_n: Optional[int] = None, |
|
user: Optional[str] = None, |
|
) -> RerankResult: |
|
""" |
|
Invoke rerank model |
|
|
|
:param query: search query |
|
:param docs: docs for reranking |
|
:param score_threshold: score threshold |
|
:param top_n: top n |
|
:param user: unique user id |
|
:return: rerank result |
|
""" |
|
if not isinstance(self.model_type_instance, RerankModel): |
|
raise Exception("Model type instance is not RerankModel") |
|
|
|
self.model_type_instance = cast(RerankModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
query=query, |
|
docs=docs, |
|
score_threshold=score_threshold, |
|
top_n=top_n, |
|
user=user, |
|
) |
|
|
|
def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool: |
|
""" |
|
Invoke moderation model |
|
|
|
:param text: text to moderate |
|
:param user: unique user id |
|
:return: false if text is safe, true otherwise |
|
""" |
|
if not isinstance(self.model_type_instance, ModerationModel): |
|
raise Exception("Model type instance is not ModerationModel") |
|
|
|
self.model_type_instance = cast(ModerationModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
text=text, |
|
user=user, |
|
) |
|
|
|
def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str: |
|
""" |
|
Invoke large language model |
|
|
|
:param file: audio file |
|
:param user: unique user id |
|
:return: text for given audio file |
|
""" |
|
if not isinstance(self.model_type_instance, Speech2TextModel): |
|
raise Exception("Model type instance is not Speech2TextModel") |
|
|
|
self.model_type_instance = cast(Speech2TextModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
file=file, |
|
user=user, |
|
) |
|
|
|
def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) -> Iterable[bytes]: |
|
""" |
|
Invoke large language tts model |
|
|
|
:param content_text: text content to be translated |
|
:param tenant_id: user tenant id |
|
:param voice: model timbre |
|
:param user: unique user id |
|
:return: text for given audio file |
|
""" |
|
if not isinstance(self.model_type_instance, TTSModel): |
|
raise Exception("Model type instance is not TTSModel") |
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance) |
|
return self._round_robin_invoke( |
|
function=self.model_type_instance.invoke, |
|
model=self.model, |
|
credentials=self.credentials, |
|
content_text=content_text, |
|
user=user, |
|
tenant_id=tenant_id, |
|
voice=voice, |
|
) |
|
|
|
def _round_robin_invoke(self, function: Callable[..., Any], *args, **kwargs): |
|
""" |
|
Round-robin invoke |
|
:param function: function to invoke |
|
:param args: function args |
|
:param kwargs: function kwargs |
|
:return: |
|
""" |
|
if not self.load_balancing_manager: |
|
return function(*args, **kwargs) |
|
|
|
last_exception = None |
|
while True: |
|
lb_config = self.load_balancing_manager.fetch_next() |
|
if not lb_config: |
|
if not last_exception: |
|
raise ProviderTokenNotInitError("Model credentials is not initialized.") |
|
else: |
|
raise last_exception |
|
|
|
try: |
|
if "credentials" in kwargs: |
|
del kwargs["credentials"] |
|
return function(*args, **kwargs, credentials=lb_config.credentials) |
|
except InvokeRateLimitError as e: |
|
|
|
self.load_balancing_manager.cooldown(lb_config, expire=60) |
|
last_exception = e |
|
continue |
|
except (InvokeAuthorizationError, InvokeConnectionError) as e: |
|
|
|
self.load_balancing_manager.cooldown(lb_config, expire=10) |
|
last_exception = e |
|
continue |
|
except Exception as e: |
|
raise e |
|
|
|
def get_tts_voices(self, language: Optional[str] = None) -> list: |
|
""" |
|
Invoke large language tts model voices |
|
|
|
:param language: tts language |
|
:return: tts model voices |
|
""" |
|
if not isinstance(self.model_type_instance, TTSModel): |
|
raise Exception("Model type instance is not TTSModel") |
|
|
|
self.model_type_instance = cast(TTSModel, self.model_type_instance) |
|
return self.model_type_instance.get_tts_model_voices( |
|
model=self.model, credentials=self.credentials, language=language |
|
) |
|
|
|
|
|
class ModelManager: |
|
def __init__(self) -> None: |
|
self._provider_manager = ProviderManager() |
|
|
|
def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance: |
|
""" |
|
Get model instance |
|
:param tenant_id: tenant id |
|
:param provider: provider name |
|
:param model_type: model type |
|
:param model: model name |
|
:return: |
|
""" |
|
if not provider: |
|
return self.get_default_model_instance(tenant_id, model_type) |
|
|
|
provider_model_bundle = self._provider_manager.get_provider_model_bundle( |
|
tenant_id=tenant_id, provider=provider, model_type=model_type |
|
) |
|
|
|
return ModelInstance(provider_model_bundle, model) |
|
|
|
def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]: |
|
""" |
|
Return first provider and the first model in the provider |
|
:param tenant_id: tenant id |
|
:param model_type: model type |
|
:return: provider name, model name |
|
""" |
|
return self._provider_manager.get_first_provider_first_model(tenant_id, model_type) |
|
|
|
def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance: |
|
""" |
|
Get default model instance |
|
:param tenant_id: tenant id |
|
:param model_type: model type |
|
:return: |
|
""" |
|
default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type) |
|
|
|
if not default_model_entity: |
|
raise ProviderTokenNotInitError(f"Default model not found for {model_type}") |
|
|
|
return self.get_model_instance( |
|
tenant_id=tenant_id, |
|
provider=default_model_entity.provider.provider, |
|
model_type=model_type, |
|
model=default_model_entity.model, |
|
) |
|
|
|
|
|
class LBModelManager: |
|
def __init__( |
|
self, |
|
tenant_id: str, |
|
provider: str, |
|
model_type: ModelType, |
|
model: str, |
|
load_balancing_configs: list[ModelLoadBalancingConfiguration], |
|
managed_credentials: Optional[dict] = None, |
|
) -> None: |
|
""" |
|
Load balancing model manager |
|
:param tenant_id: tenant_id |
|
:param provider: provider |
|
:param model_type: model_type |
|
:param model: model name |
|
:param load_balancing_configs: all load balancing configurations |
|
:param managed_credentials: credentials if load balancing configuration name is __inherit__ |
|
""" |
|
self._tenant_id = tenant_id |
|
self._provider = provider |
|
self._model_type = model_type |
|
self._model = model |
|
self._load_balancing_configs = load_balancing_configs |
|
|
|
for load_balancing_config in self._load_balancing_configs[:]: |
|
if load_balancing_config.name == "__inherit__": |
|
if not managed_credentials: |
|
|
|
self._load_balancing_configs.remove(load_balancing_config) |
|
else: |
|
load_balancing_config.credentials = managed_credentials |
|
|
|
def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]: |
|
""" |
|
Get next model load balancing config |
|
Strategy: Round Robin |
|
:return: |
|
""" |
|
cache_key = "model_lb_index:{}:{}:{}:{}".format( |
|
self._tenant_id, self._provider, self._model_type.value, self._model |
|
) |
|
|
|
cooldown_load_balancing_configs = [] |
|
max_index = len(self._load_balancing_configs) |
|
|
|
while True: |
|
current_index = redis_client.incr(cache_key) |
|
current_index = cast(int, current_index) |
|
if current_index >= 10000000: |
|
current_index = 1 |
|
redis_client.set(cache_key, current_index) |
|
|
|
redis_client.expire(cache_key, 3600) |
|
if current_index > max_index: |
|
current_index = current_index % max_index |
|
|
|
real_index = current_index - 1 |
|
if real_index > max_index: |
|
real_index = 0 |
|
|
|
config = self._load_balancing_configs[real_index] |
|
|
|
if self.in_cooldown(config): |
|
cooldown_load_balancing_configs.append(config) |
|
if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs): |
|
|
|
return None |
|
|
|
continue |
|
|
|
if bool(os.environ.get("DEBUG", "False").lower() == "true"): |
|
logger.info( |
|
f"Model LB\nid: {config.id}\nname:{config.name}\n" |
|
f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n" |
|
f"model_type: {self._model_type.value}\nmodel: {self._model}" |
|
) |
|
|
|
return config |
|
|
|
return None |
|
|
|
def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None: |
|
""" |
|
Cooldown model load balancing config |
|
:param config: model load balancing config |
|
:param expire: cooldown time |
|
:return: |
|
""" |
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format( |
|
self._tenant_id, self._provider, self._model_type.value, self._model, config.id |
|
) |
|
|
|
redis_client.setex(cooldown_cache_key, expire, "true") |
|
|
|
def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool: |
|
""" |
|
Check if model load balancing config is in cooldown |
|
:param config: model load balancing config |
|
:return: |
|
""" |
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format( |
|
self._tenant_id, self._provider, self._model_type.value, self._model, config.id |
|
) |
|
|
|
res = redis_client.exists(cooldown_cache_key) |
|
res = cast(bool, res) |
|
return res |
|
|
|
@staticmethod |
|
def get_config_in_cooldown_and_ttl( |
|
tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str |
|
) -> tuple[bool, int]: |
|
""" |
|
Get model load balancing config is in cooldown and ttl |
|
:param tenant_id: workspace id |
|
:param provider: provider name |
|
:param model_type: model type |
|
:param model: model name |
|
:param config_id: model load balancing config id |
|
:return: |
|
""" |
|
cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format( |
|
tenant_id, provider, model_type.value, model, config_id |
|
) |
|
|
|
ttl = redis_client.ttl(cooldown_cache_key) |
|
if ttl == -2: |
|
return False, 0 |
|
|
|
ttl = cast(int, ttl) |
|
return True, ttl |
|
|