|
import datetime |
|
import logging |
|
import time |
|
import uuid |
|
|
|
import click |
|
from celery import shared_task |
|
from sqlalchemy import func |
|
|
|
from core.indexing_runner import IndexingRunner |
|
from core.model_manager import ModelManager |
|
from core.model_runtime.entities.model_entities import ModelType |
|
from extensions.ext_database import db |
|
from extensions.ext_redis import redis_client |
|
from libs import helper |
|
from models.dataset import Dataset, Document, DocumentSegment |
|
|
|
|
|
@shared_task(queue="dataset") |
|
def batch_create_segment_to_index_task( |
|
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str |
|
): |
|
""" |
|
Async batch create segment to index |
|
:param job_id: |
|
:param content: |
|
:param dataset_id: |
|
:param document_id: |
|
:param tenant_id: |
|
:param user_id: |
|
|
|
Usage: batch_create_segment_to_index_task.delay(segment_id) |
|
""" |
|
logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green")) |
|
start_at = time.perf_counter() |
|
|
|
indexing_cache_key = "segment_batch_import_{}".format(job_id) |
|
|
|
try: |
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() |
|
if not dataset: |
|
raise ValueError("Dataset not exist.") |
|
|
|
dataset_document = db.session.query(Document).filter(Document.id == document_id).first() |
|
if not dataset_document: |
|
raise ValueError("Document not exist.") |
|
|
|
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed": |
|
raise ValueError("Document is not available.") |
|
document_segments = [] |
|
embedding_model = None |
|
if dataset.indexing_technique == "high_quality": |
|
model_manager = ModelManager() |
|
embedding_model = model_manager.get_model_instance( |
|
tenant_id=dataset.tenant_id, |
|
provider=dataset.embedding_model_provider, |
|
model_type=ModelType.TEXT_EMBEDDING, |
|
model=dataset.embedding_model, |
|
) |
|
|
|
for segment in content: |
|
content = segment["content"] |
|
doc_id = str(uuid.uuid4()) |
|
segment_hash = helper.generate_text_hash(content) |
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0 |
|
max_position = ( |
|
db.session.query(func.max(DocumentSegment.position)) |
|
.filter(DocumentSegment.document_id == dataset_document.id) |
|
.scalar() |
|
) |
|
segment_document = DocumentSegment( |
|
tenant_id=tenant_id, |
|
dataset_id=dataset_id, |
|
document_id=document_id, |
|
index_node_id=doc_id, |
|
index_node_hash=segment_hash, |
|
position=max_position + 1 if max_position else 1, |
|
content=content, |
|
word_count=len(content), |
|
tokens=tokens, |
|
created_by=user_id, |
|
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
status="completed", |
|
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), |
|
) |
|
if dataset_document.doc_form == "qa_model": |
|
segment_document.answer = segment["answer"] |
|
db.session.add(segment_document) |
|
document_segments.append(segment_document) |
|
|
|
indexing_runner = IndexingRunner() |
|
indexing_runner.batch_add_segments(document_segments, dataset) |
|
db.session.commit() |
|
redis_client.setex(indexing_cache_key, 600, "completed") |
|
end_at = time.perf_counter() |
|
logging.info( |
|
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green") |
|
) |
|
except Exception as e: |
|
logging.exception("Segments batch created index failed:{}".format(str(e))) |
|
redis_client.setex(indexing_cache_key, 600, "error") |
|
|