dify / api /tasks /batch_create_segment_to_index_task.py
Severian's picture
initial commit
a8b3f00
raw
history blame
4.09 kB
import datetime
import logging
import time
import uuid
import click
from celery import shared_task
from sqlalchemy import func
from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.dataset import Dataset, Document, DocumentSegment
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
):
"""
Async batch create segment to index
:param job_id:
:param content:
:param dataset_id:
:param document_id:
:param tenant_id:
:param user_id:
Usage: batch_create_segment_to_index_task.delay(segment_id)
"""
logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
start_at = time.perf_counter()
indexing_cache_key = "segment_batch_import_{}".format(job_id)
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise ValueError("Dataset not exist.")
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document:
raise ValueError("Document not exist.")
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
for segment in content:
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id)
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=user_id,
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
status="completed",
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
)
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
db.session.add(segment_document)
document_segments.append(segment_document)
# add index to db
indexing_runner = IndexingRunner()
indexing_runner.batch_add_segments(document_segments, dataset)
db.session.commit()
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("Segments batch created index failed:{}".format(str(e)))
redis_client.setex(indexing_cache_key, 600, "error")