|
import logging |
|
import time |
|
|
|
import click |
|
from celery import shared_task |
|
|
|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory |
|
from extensions.ext_database import db |
|
from extensions.ext_storage import storage |
|
from models.dataset import ( |
|
AppDatasetJoin, |
|
Dataset, |
|
DatasetProcessRule, |
|
DatasetQuery, |
|
Document, |
|
DocumentSegment, |
|
) |
|
from models.model import UploadFile |
|
|
|
|
|
|
|
@shared_task(queue="dataset") |
|
def clean_dataset_task( |
|
dataset_id: str, |
|
tenant_id: str, |
|
indexing_technique: str, |
|
index_struct: str, |
|
collection_binding_id: str, |
|
doc_form: str, |
|
): |
|
""" |
|
Clean dataset when dataset deleted. |
|
:param dataset_id: dataset id |
|
:param tenant_id: tenant id |
|
:param indexing_technique: indexing technique |
|
:param index_struct: index struct dict |
|
:param collection_binding_id: collection binding id |
|
:param doc_form: dataset form |
|
|
|
Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct) |
|
""" |
|
logging.info(click.style("Start clean dataset when dataset deleted: {}".format(dataset_id), fg="green")) |
|
start_at = time.perf_counter() |
|
|
|
try: |
|
dataset = Dataset( |
|
id=dataset_id, |
|
tenant_id=tenant_id, |
|
indexing_technique=indexing_technique, |
|
index_struct=index_struct, |
|
collection_binding_id=collection_binding_id, |
|
) |
|
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id).all() |
|
segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all() |
|
|
|
if documents is None or len(documents) == 0: |
|
logging.info(click.style("No documents found for dataset: {}".format(dataset_id), fg="green")) |
|
else: |
|
logging.info(click.style("Cleaning documents for dataset: {}".format(dataset_id), fg="green")) |
|
|
|
if doc_form is None: |
|
raise ValueError("Index type must be specified.") |
|
index_processor = IndexProcessorFactory(doc_form).init_index_processor() |
|
index_processor.clean(dataset, None) |
|
|
|
for document in documents: |
|
db.session.delete(document) |
|
|
|
for segment in segments: |
|
db.session.delete(segment) |
|
|
|
db.session.query(DatasetProcessRule).filter(DatasetProcessRule.dataset_id == dataset_id).delete() |
|
db.session.query(DatasetQuery).filter(DatasetQuery.dataset_id == dataset_id).delete() |
|
db.session.query(AppDatasetJoin).filter(AppDatasetJoin.dataset_id == dataset_id).delete() |
|
|
|
|
|
if documents: |
|
for document in documents: |
|
try: |
|
if document.data_source_type == "upload_file": |
|
if document.data_source_info: |
|
data_source_info = document.data_source_info_dict |
|
if data_source_info and "upload_file_id" in data_source_info: |
|
file_id = data_source_info["upload_file_id"] |
|
file = ( |
|
db.session.query(UploadFile) |
|
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id) |
|
.first() |
|
) |
|
if not file: |
|
continue |
|
storage.delete(file.key) |
|
db.session.delete(file) |
|
except Exception: |
|
continue |
|
|
|
db.session.commit() |
|
end_at = time.perf_counter() |
|
logging.info( |
|
click.style( |
|
"Cleaned dataset when dataset deleted: {} latency: {}".format(dataset_id, end_at - start_at), fg="green" |
|
) |
|
) |
|
except Exception: |
|
logging.exception("Cleaned dataset when dataset deleted failed") |
|
|