|
import datetime |
|
import logging |
|
import time |
|
|
|
import click |
|
from celery import shared_task |
|
|
|
from configs import dify_config |
|
from core.indexing_runner import DocumentIsPausedError, IndexingRunner |
|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory |
|
from extensions.ext_database import db |
|
from models.dataset import Dataset, Document, DocumentSegment |
|
from services.feature_service import FeatureService |
|
|
|
|
|
@shared_task(queue="dataset") |
|
def duplicate_document_indexing_task(dataset_id: str, document_ids: list): |
|
""" |
|
Async process document |
|
:param dataset_id: |
|
:param document_ids: |
|
|
|
Usage: duplicate_document_indexing_task.delay(dataset_id, document_id) |
|
""" |
|
documents = [] |
|
start_at = time.perf_counter() |
|
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() |
|
|
|
|
|
features = FeatureService.get_features(dataset.tenant_id) |
|
try: |
|
if features.billing.enabled: |
|
vector_space = features.vector_space |
|
count = len(document_ids) |
|
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) |
|
if count > batch_upload_limit: |
|
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") |
|
if 0 < vector_space.limit <= vector_space.size: |
|
raise ValueError( |
|
"Your total number of documents plus the number of uploads have over the limit of " |
|
"your subscription." |
|
) |
|
except Exception as e: |
|
for document_id in document_ids: |
|
document = ( |
|
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() |
|
) |
|
if document: |
|
document.indexing_status = "error" |
|
document.error = str(e) |
|
document.stopped_at = datetime.datetime.utcnow() |
|
db.session.add(document) |
|
db.session.commit() |
|
return |
|
|
|
for document_id in document_ids: |
|
logging.info(click.style("Start process document: {}".format(document_id), fg="green")) |
|
|
|
document = ( |
|
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() |
|
) |
|
|
|
if document: |
|
|
|
index_type = document.doc_form |
|
index_processor = IndexProcessorFactory(index_type).init_index_processor() |
|
|
|
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() |
|
if segments: |
|
index_node_ids = [segment.index_node_id for segment in segments] |
|
|
|
|
|
index_processor.clean(dataset, index_node_ids) |
|
|
|
for segment in segments: |
|
db.session.delete(segment) |
|
db.session.commit() |
|
|
|
document.indexing_status = "parsing" |
|
document.processing_started_at = datetime.datetime.utcnow() |
|
documents.append(document) |
|
db.session.add(document) |
|
db.session.commit() |
|
|
|
try: |
|
indexing_runner = IndexingRunner() |
|
indexing_runner.run(documents) |
|
end_at = time.perf_counter() |
|
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")) |
|
except DocumentIsPausedError as ex: |
|
logging.info(click.style(str(ex), fg="yellow")) |
|
except Exception: |
|
pass |
|
|