import json import logging from collections.abc import Generator from copy import deepcopy from typing import Any, Optional, Union from core.agent.base_agent_runner import BaseAgentRunner from core.app.apps.base_app_queue_manager import PublishFrom from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent from core.file import file_manager from core.model_runtime.entities import ( AssistantPromptMessage, LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage, PromptMessage, PromptMessageContent, PromptMessageContentType, SystemPromptMessage, TextPromptMessageContent, ToolPromptMessage, UserPromptMessage, ) from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform from core.tools.entities.tool_entities import ToolInvokeMeta from core.tools.tool_engine import ToolEngine from models.model import Message logger = logging.getLogger(__name__) class FunctionCallAgentRunner(BaseAgentRunner): def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]: """ Run FunctionCall agent application """ self.query = query app_generate_entity = self.application_generate_entity app_config = self.app_config # convert tools into ModelRuntime Tool format tool_instances, prompt_messages_tools = self._init_prompt_tools() iteration_step = 1 max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1 # continue to run until there is not any tool call function_call_state = True llm_usage = {"usage": None} final_answer = "" # get tracing instance trace_manager = app_generate_entity.trace_manager def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage): if not final_llm_usage_dict["usage"]: final_llm_usage_dict["usage"] = usage else: llm_usage = final_llm_usage_dict["usage"] llm_usage.prompt_tokens += usage.prompt_tokens llm_usage.completion_tokens += usage.completion_tokens llm_usage.prompt_price += usage.prompt_price llm_usage.completion_price += usage.completion_price llm_usage.total_price += usage.total_price model_instance = self.model_instance while function_call_state and iteration_step <= max_iteration_steps: function_call_state = False if iteration_step == max_iteration_steps: # the last iteration, remove all tools prompt_messages_tools = [] message_file_ids = [] agent_thought = self.create_agent_thought( message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids ) # recalc llm max tokens prompt_messages = self._organize_prompt_messages() self.recalc_llm_max_tokens(self.model_config, prompt_messages) # invoke model chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm( prompt_messages=prompt_messages, model_parameters=app_generate_entity.model_conf.parameters, tools=prompt_messages_tools, stop=app_generate_entity.model_conf.stop, stream=self.stream_tool_call, user=self.user_id, callbacks=[], ) tool_calls: list[tuple[str, str, dict[str, Any]]] = [] # save full response response = "" # save tool call names and inputs tool_call_names = "" tool_call_inputs = "" current_llm_usage = None if self.stream_tool_call: is_first_chunk = True for chunk in chunks: if is_first_chunk: self.queue_manager.publish( QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER ) is_first_chunk = False # check if there is any tool call if self.check_tool_calls(chunk): function_call_state = True tool_calls.extend(self.extract_tool_calls(chunk)) tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls]) try: tool_call_inputs = json.dumps( {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False ) except json.JSONDecodeError as e: # ensure ascii to avoid encoding error tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls}) if chunk.delta.message and chunk.delta.message.content: if isinstance(chunk.delta.message.content, list): for content in chunk.delta.message.content: response += content.data else: response += chunk.delta.message.content if chunk.delta.usage: increase_usage(llm_usage, chunk.delta.usage) current_llm_usage = chunk.delta.usage yield chunk else: result: LLMResult = chunks # check if there is any tool call if self.check_blocking_tool_calls(result): function_call_state = True tool_calls.extend(self.extract_blocking_tool_calls(result)) tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls]) try: tool_call_inputs = json.dumps( {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False ) except json.JSONDecodeError as e: # ensure ascii to avoid encoding error tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls}) if result.usage: increase_usage(llm_usage, result.usage) current_llm_usage = result.usage if result.message and result.message.content: if isinstance(result.message.content, list): for content in result.message.content: response += content.data else: response += result.message.content if not result.message.content: result.message.content = "" self.queue_manager.publish( QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER ) yield LLMResultChunk( model=model_instance.model, prompt_messages=result.prompt_messages, system_fingerprint=result.system_fingerprint, delta=LLMResultChunkDelta( index=0, message=result.message, usage=result.usage, ), ) assistant_message = AssistantPromptMessage(content="", tool_calls=[]) if tool_calls: assistant_message.tool_calls = [ AssistantPromptMessage.ToolCall( id=tool_call[0], type="function", function=AssistantPromptMessage.ToolCall.ToolCallFunction( name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False) ), ) for tool_call in tool_calls ] else: assistant_message.content = response self._current_thoughts.append(assistant_message) # save thought self.save_agent_thought( agent_thought=agent_thought, tool_name=tool_call_names, tool_input=tool_call_inputs, thought=response, tool_invoke_meta=None, observation=None, answer=response, messages_ids=[], llm_usage=current_llm_usage, ) self.queue_manager.publish( QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER ) final_answer += response + "\n" # call tools tool_responses = [] for tool_call_id, tool_call_name, tool_call_args in tool_calls: tool_instance = tool_instances.get(tool_call_name) if not tool_instance: tool_response = { "tool_call_id": tool_call_id, "tool_call_name": tool_call_name, "tool_response": f"there is not a tool named {tool_call_name}", "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(), } else: # invoke tool tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke( tool=tool_instance, tool_parameters=tool_call_args, user_id=self.user_id, tenant_id=self.tenant_id, message=self.message, invoke_from=self.application_generate_entity.invoke_from, agent_tool_callback=self.agent_callback, trace_manager=trace_manager, ) # publish files for message_file_id, save_as in message_files: if save_as: self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as) # publish message file self.queue_manager.publish( QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER ) # add message file ids message_file_ids.append(message_file_id) tool_response = { "tool_call_id": tool_call_id, "tool_call_name": tool_call_name, "tool_response": tool_invoke_response, "meta": tool_invoke_meta.to_dict(), } tool_responses.append(tool_response) if tool_response["tool_response"] is not None: self._current_thoughts.append( ToolPromptMessage( content=tool_response["tool_response"], tool_call_id=tool_call_id, name=tool_call_name, ) ) if len(tool_responses) > 0: # save agent thought self.save_agent_thought( agent_thought=agent_thought, tool_name=None, tool_input=None, thought=None, tool_invoke_meta={ tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses }, observation={ tool_response["tool_call_name"]: tool_response["tool_response"] for tool_response in tool_responses }, answer=None, messages_ids=message_file_ids, ) self.queue_manager.publish( QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER ) # update prompt tool for prompt_tool in prompt_messages_tools: self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) iteration_step += 1 self.update_db_variables(self.variables_pool, self.db_variables_pool) # publish end event self.queue_manager.publish( QueueMessageEndEvent( llm_result=LLMResult( model=model_instance.model, prompt_messages=prompt_messages, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"] or LLMUsage.empty_usage(), system_fingerprint="", ) ), PublishFrom.APPLICATION_MANAGER, ) def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool: """ Check if there is any tool call in llm result chunk """ if llm_result_chunk.delta.message.tool_calls: return True return False def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool: """ Check if there is any blocking tool call in llm result """ if llm_result.message.tool_calls: return True return False def extract_tool_calls( self, llm_result_chunk: LLMResultChunk ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]: """ Extract tool calls from llm result chunk Returns: List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)] """ tool_calls = [] for prompt_message in llm_result_chunk.delta.message.tool_calls: args = {} if prompt_message.function.arguments != "": args = json.loads(prompt_message.function.arguments) tool_calls.append( ( prompt_message.id, prompt_message.function.name, args, ) ) return tool_calls def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]: """ Extract blocking tool calls from llm result Returns: List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)] """ tool_calls = [] for prompt_message in llm_result.message.tool_calls: args = {} if prompt_message.function.arguments != "": args = json.loads(prompt_message.function.arguments) tool_calls.append( ( prompt_message.id, prompt_message.function.name, args, ) ) return tool_calls def _init_system_message( self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None ) -> list[PromptMessage]: """ Initialize system message """ if not prompt_messages and prompt_template: return [ SystemPromptMessage(content=prompt_template), ] if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template: prompt_messages.insert(0, SystemPromptMessage(content=prompt_template)) return prompt_messages def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]: """ Organize user query """ if self.files: prompt_message_contents: list[PromptMessageContent] = [] prompt_message_contents.append(TextPromptMessageContent(data=query)) for file_obj in self.files: prompt_message_contents.append(file_manager.to_prompt_message_content(file_obj)) prompt_messages.append(UserPromptMessage(content=prompt_message_contents)) else: prompt_messages.append(UserPromptMessage(content=query)) return prompt_messages def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]: """ As for now, gpt supports both fc and vision at the first iteration. We need to remove the image messages from the prompt messages at the first iteration. """ prompt_messages = deepcopy(prompt_messages) for prompt_message in prompt_messages: if isinstance(prompt_message, UserPromptMessage): if isinstance(prompt_message.content, list): prompt_message.content = "\n".join( [ content.data if content.type == PromptMessageContentType.TEXT else "[image]" if content.type == PromptMessageContentType.IMAGE else "[file]" for content in prompt_message.content ] ) return prompt_messages def _organize_prompt_messages(self): prompt_template = self.app_config.prompt_template.simple_prompt_template or "" self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages) query_prompt_messages = self._organize_user_query(self.query, []) self.history_prompt_messages = AgentHistoryPromptTransform( model_config=self.model_config, prompt_messages=[*query_prompt_messages, *self._current_thoughts], history_messages=self.history_prompt_messages, memory=self.memory, ).get_prompt() prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts] if len(self._current_thoughts) != 0: # clear messages after the first iteration prompt_messages = self._clear_user_prompt_image_messages(prompt_messages) return prompt_messages