File size: 3,870 Bytes
fff8451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import imageio
import os
import gradio as gr
from diffusers.schedulers import EulerAncestralDiscreteScheduler
from transformers import T5EncoderModel, T5Tokenizer
from allegro.pipelines.pipeline_allegro import AllegroPipeline
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel

import huggingface_hub

weights_dir = './allegro_weights'
os.makedirs(weights_dir, exist_ok=True)

huggingface_hub.snapshot_download(
    repo_id='rhymes-ai/Allegro',
    allow_patterns=[
        'scheduler/**',
        'text_encoder/**',
        'tokenizer/**',
        'transformer/**',
        'vae/**',
    ],
    local_dir=weights_dir,
    local_dir_use_symlinks=False,
)


def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
    dtype = torch.bfloat16

    # Load models
    vae = AllegroAutoencoderKL3D.from_pretrained(
        "weights_dir/vae/", 
        torch_dtype=torch.float32
    ).cuda()
    vae.eval()

    text_encoder = T5EncoderModel.from_pretrained("weights_dir/text_encoder/", torch_dtype=dtype)
    text_encoder.eval()

    tokenizer = T5Tokenizer.from_pretrained("weights_dir/tokenizer/")

    scheduler = EulerAncestralDiscreteScheduler()

    transformer = AllegroTransformer3DModel.from_pretrained("weights_dir/transformer/", torch_dtype=dtype).cuda()
    transformer.eval()

    allegro_pipeline = AllegroPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        scheduler=scheduler,
        transformer=transformer
    ).to("cuda:0")

    positive_prompt = """
    (masterpiece), (best quality), (ultra-detailed), (unwatermarked), 
    {} 
    emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, 
    sharp focus, high budget, cinemascope, moody, epic, gorgeous
    """

    negative_prompt = """
    nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, 
    low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
    """

    # Process user prompt
    user_prompt = positive_prompt.format(user_prompt.lower().strip())

    if enable_cpu_offload:
        allegro_pipeline.enable_sequential_cpu_offload()

    out_video = allegro_pipeline(
        user_prompt, 
        negative_prompt=negative_prompt, 
        num_frames=88,
        height=720,
        width=1280,
        num_inference_steps=num_sampling_steps,
        guidance_scale=guidance_scale,
        max_sequence_length=512,
        generator=torch.Generator(device="cuda:0").manual_seed(seed)
    ).video[0]

    # Save video
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    imageio.mimwrite(save_path, out_video, fps=15, quality=8)

    return save_path


# Gradio interface function
def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
    save_path = "./output_videos/generated_video.mp4"
    result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload)
    return result_path


# Create Gradio interface
iface = gr.Interface(
    fn=run_inference,
    inputs=[
        gr.Textbox(label="User Prompt"),
        gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5),
        gr.Slider(minimum=10, maximum=200, step=1, label="Number of Sampling Steps", value=100),
        gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42),
        gr.Checkbox(label="Enable CPU Offload", value=False),
    ],
    outputs=gr.Video(label="Generated Video"),
    title="Allegro Video Generation",
    description="Generate a video based on a text prompt using the Allegro pipeline."
)

# Launch the interface
iface.launch()