Spaces:
Running
Running
File size: 13,139 Bytes
fff8451 cb5166a fff8451 b477ed7 fff8451 071420e fff8451 cb5166a fff8451 0068a8e fff8451 0068a8e fff8451 0068a8e fff8451 0068a8e fff8451 98b60eb fff8451 071420e 3f40fd4 071420e f6d5501 071420e f6d5501 071420e f6d5501 071420e f6d5501 071420e fff8451 071420e 3f40fd4 071420e eef9e5e 9070608 071420e 9070608 77db079 9070608 77db079 9070608 071420e 9070608 b6268aa 9070608 071420e 9070608 071420e 0025f8f 071420e d63ddc4 da2b6f6 fff8451 071420e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import torch
import imageio
import os
import gradio as gr
import subprocess
from subprocess import getoutput
from diffusers.schedulers import EulerAncestralDiscreteScheduler
from transformers import T5EncoderModel, T5Tokenizer
from allegro.pipelines.pipeline_allegro import AllegroPipeline
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel
from huggingface_hub import snapshot_download
weights_dir = './allegro_weights'
os.makedirs(weights_dir, exist_ok=True)
is_shared_ui = True if "fffiloni/allegro-t2v" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()
if not is_shared_ui:
snapshot_download(
repo_id='rhymes-ai/Allegro',
allow_patterns=[
'scheduler/**',
'text_encoder/**',
'tokenizer/**',
'transformer/**',
'vae/**',
],
local_dir=weights_dir,
)
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload):
dtype = torch.bfloat16
# Load models
vae = AllegroAutoencoderKL3D.from_pretrained(
"./allegro_weights/vae/",
torch_dtype=torch.float32
).cuda()
vae.eval()
text_encoder = T5EncoderModel.from_pretrained("./allegro_weights/text_encoder/", torch_dtype=dtype)
text_encoder.eval()
tokenizer = T5Tokenizer.from_pretrained("./allegro_weights/tokenizer/")
scheduler = EulerAncestralDiscreteScheduler()
transformer = AllegroTransformer3DModel.from_pretrained("./allegro_weights/transformer/", torch_dtype=dtype).cuda()
transformer.eval()
allegro_pipeline = AllegroPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer
).to("cuda:0")
positive_prompt = """
(masterpiece), (best quality), (ultra-detailed), (unwatermarked),
{}
emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo,
sharp focus, high budget, cinemascope, moody, epic, gorgeous
"""
negative_prompt = """
nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality,
low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
"""
# Process user prompt
user_prompt = positive_prompt.format(user_prompt.lower().strip())
if enable_cpu_offload:
allegro_pipeline.enable_sequential_cpu_offload()
out_video = allegro_pipeline(
user_prompt,
negative_prompt=negative_prompt,
num_frames=88,
height=720,
width=1280,
num_inference_steps=num_sampling_steps,
guidance_scale=guidance_scale,
max_sequence_length=512,
generator=torch.Generator(device="cuda:0").manual_seed(seed)
).video[0]
# Save video
os.makedirs(os.path.dirname(save_path), exist_ok=True)
imageio.mimwrite(save_path, out_video, fps=15, quality=8)
return save_path
# Gradio interface function
def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload, progress=gr.Progress(track_tqdm=True)):
save_path = "./output_videos/generated_video.mp4"
result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload)
return result_path
css="""
div#col-container{
margin: 0 auto;
max-width: 800px;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
div#warning-setgpu {
background-color: #fff4eb;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
color: #91230f;
}
div#warning-setgpu p.actions > a {
display: inline-block;
background: #1f1f23;
border-radius: 40px;
padding: 6px 24px;
color: antiquewhite;
text-decoration: none;
font-weight: 600;
font-size: 1.2em;
}
div#warning-setsleeptime {
background-color: #fff4eb;
padding: 10px 10px;
margin: 0!important;
color: #030303!important;
}
.custom-color {
color: #030303 !important;
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Allegro Video Generation")
gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://huggingface.co/rhymes-ai/Allegro'>
<img src='https://img.shields.io/badge/HuggingFace-Model-orange'>
</a>
<a href='https://github.com/rhymes-ai/Allegro/tree/main'>
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://arxiv.org/abs/2410.15458'>
<img src='https://img.shields.io/badge/ArXivPaper-red'>
</a>
</div>
""")
user_prompt=gr.Textbox(label="User Prompt")
with gr.Row():
guidance_scale=gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5)
num_sampling_steps=gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20)
with gr.Row():
seed=gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42)
enable_cpu_offload=gr.Checkbox(label="Enable CPU Offload", value=False, scale=1)
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Attention: this Space need to be duplicated to work</h2>
<p class="main-message custom-color">
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU.<br />
You'll be able to offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
</p>
</div>
''', elem_id="warning-duplicate")
submit_btn = gr.Button("Generate Video", visible=False)
else:
if(is_gpu_associated):
submit_btn = gr.Button("Generate Video", visible=True)
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully associated a GPU to this Space 🎉</h2>
<p class="custom-color">
You can now generate a video! You will be billed by the minute from when you activated the GPU until when it is turned off.
You can offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly.
</p>
</div>
''', elem_id="warning-ready")
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully duplicated the Allegro Video Generation Space 🎉</h2>
<p class="custom-color">There's only one step left before you can generate a video: we recommend to <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a L40S GPU</b> to it (via the Settings tab)</a>.
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">🔥 Set recommended GPU</a>
</p>
</div>
''', elem_id="warning-setgpu")
submit_btn = gr.Button("Generate Video", visible=False)
video_output=gr.Video(label="Generated Video")
def load_allegro_examples(prompt):
if prompt == "A Monkey is playing bass guitar.":
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/11.mp4"
elif prompt == "An astronaut riding a horde.":
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/15.mp4"
elif prompt == "A tiny finch on a branch with spring flowers on background.":
return "https://rhymes.ai/allegroVideos/30_demo_w_watermark_prompt_1018/22.mp4"
gr.Examples(
examples=[
["A Monkey is playing bass guitar."],
["An astronaut riding a horse."],
["A tiny finch on a branch with spring flowers on background."]
],
fn=load_allegro_examples,
inputs=[user_prompt],
outputs=video_output,
run_on_click=True
)
submit_btn.click(
fn=run_inference,
inputs=[user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload],
outputs=video_output
)
# Launch the interface
demo.launch(show_error=True, show_api=False)
|