Sg-at-srijan-us-kg
commited on
Commit
•
837f660
1
Parent(s):
9e6aa66
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,43 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
8 |
|
9 |
-
|
10 |
def respond(
|
11 |
message,
|
12 |
-
history
|
13 |
system_message,
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
|
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
|
|
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -35,16 +46,12 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=32000, value=2048, step=1, label="Max new tokens"),
|
@@ -54,11 +61,11 @@ demo = gr.ChatInterface(
|
|
54 |
maximum=1.0,
|
55 |
value=0.95,
|
56 |
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)"
|
58 |
),
|
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
4 |
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
5 |
|
|
|
6 |
def respond(
|
7 |
message,
|
8 |
+
history,
|
9 |
system_message,
|
10 |
max_tokens,
|
11 |
temperature,
|
12 |
top_p,
|
13 |
+
file=None
|
14 |
):
|
15 |
+
# Initialize messages with the system message
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
|
18 |
+
# Read file content if a file is uploaded
|
19 |
+
if file:
|
20 |
+
try:
|
21 |
+
file_content = file.read().decode('utf-8') # Read and decode bytes to string
|
22 |
+
print("File content:", file_content) # Debug print
|
23 |
+
message = f"{file_content}\n\n{message}" # Append file content to message
|
24 |
+
except Exception as e:
|
25 |
+
print("Error reading file:", e)
|
26 |
+
message = f"(Error reading file: {e})\n\n{message}"
|
27 |
+
|
28 |
+
# Append conversation history
|
29 |
for val in history:
|
30 |
if val[0]:
|
31 |
messages.append({"role": "user", "content": val[0]})
|
32 |
if val[1]:
|
33 |
messages.append({"role": "assistant", "content": val[1]})
|
34 |
|
35 |
+
# Append the latest user message
|
36 |
messages.append({"role": "user", "content": message})
|
37 |
|
38 |
response = ""
|
39 |
|
40 |
+
# Stream response from the model
|
41 |
for message in client.chat_completion(
|
42 |
messages,
|
43 |
max_tokens=max_tokens,
|
|
|
46 |
top_p=top_p,
|
47 |
):
|
48 |
token = message.choices[0].delta.content
|
|
|
49 |
response += token
|
50 |
yield response
|
51 |
|
52 |
+
# Set up the Gradio interface
|
|
|
|
|
|
|
53 |
demo = gr.ChatInterface(
|
54 |
+
fn=respond,
|
55 |
additional_inputs=[
|
56 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
57 |
gr.Slider(minimum=1, maximum=32000, value=2048, step=1, label="Max new tokens"),
|
|
|
61 |
maximum=1.0,
|
62 |
value=0.95,
|
63 |
step=0.05,
|
64 |
+
label="Top-p (nucleus sampling)"
|
65 |
),
|
66 |
+
gr.File(label="Upload a text file", file_types=[".txt"])
|
67 |
],
|
68 |
)
|
69 |
|
|
|
70 |
if __name__ == "__main__":
|
71 |
+
demo.launch()
|