ShAnSantosh commited on
Commit
e50d863
1 Parent(s): 2588365

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -5
app.py CHANGED
@@ -1,10 +1,34 @@
 
1
  import torch
2
  import transformers
3
  from transformers import BertTokenizer, BertForMaskedLM
4
- import gradio as gr
5
 
6
- def greet(name):
7
- return "Hello " + name + "!"
 
 
 
 
 
8
 
9
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
10
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
  import torch
3
  import transformers
4
  from transformers import BertTokenizer, BertForMaskedLM
 
5
 
6
+ device = torch.device('cpu')
7
+
8
+ NUM_CLASSES=5
9
+
10
+ model=BertForMaskedLM.from_pretrained("./")
11
+ tokenizer=BertTokenizer.from_pretrained("./")
12
+
13
 
14
+ def predict(text=None) -> dict:
15
+ model.eval()
16
+ inputs = tokenizer(str(text), return_tensors="pt")
17
+ input_ids = inputs["input_ids"].to(device)
18
+ attention_mask = inputs["attention_mask"].to(device)
19
+ model.to(device)
20
+ token_logits = model(input_ids, attention_mask=attention_mask).logits
21
+ mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
22
+ mask_token_logits = token_logits[0, mask_token_index, :]
23
+ top_5_tokens = torch.topk(mask_token_logits, NUM_CLASSES, dim=1).indices[0].tolist()
24
+ score = torch.nn.functional.softmax(mask_token_logits)[0]
25
+ top_5_score = torch.topk(score, NUM_CLASSES).values.tolist()
26
+ return {tokenizer.decode([tok]): float(score) for tok, score in zip(top_5_tokens, top_5_score)}
27
+
28
+ gr.Interface(fn=predict,
29
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Your Text… "),
30
+ title="Mask Language Modeling",
31
+ outputs=gr.outputs.Label(num_top_classes=NUM_CLASSES),
32
+ description="Masked language modeling is the task of masking some of the words in a sentence and predicting which words should replace those masks",
33
+ examples=['A Good Man Is Hard to Find [MASK].', 'Some stories have a [MASK] kind of message called a moral.'],
34
+ interpretation='default').launch()