import numpy import torch import gradio as gr from einops import rearrange from torchvision import transforms from model import CANNet model = CANNet() checkpoint = torch.load('part_B_pre.pth.tar',map_location=torch.device('cpu')) model.load_state_dict(checkpoint['state_dict']) model.eval() ## Defining the transform function transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) def crowd(img): ## Transforming the image img = transform(img) ## Adding batch dimension img = rearrange(img, "c h w -> 1 c h w") ## Slicing the image into four parts h = img.shape[2] w = img.shape[3] h_d = int(h/2) w_d = int(w/2) img_1 = img[:,:,:h_d,:w_d] img_2 = img[:,:,:h_d,w_d:] img_3 = img[:,:,h_d:,:w_d] img_4 = img[:,:,h_d:,w_d:] ## Inputting the 4 images into the model, converting it to numpy array, and summing to get the density with torch.no_grad(): density_1 = model(img_1).numpy().sum() density_2 = model(img_2).numpy().sum() density_3 = model(img_3).numpy().sum() density_4 = model(img_4).numpy().sum() ## Summing up the estimated density and rounding the result to get an integer pred = density_1 + density_2 + density_3 + density_4 pred = int(pred.round()) return pred outputs = gr.outputs.Textbox(type="text", label="Estimated crowd density:") inputs = gr.inputs.Image(type="numpy", label="Input the image here:") gr.Interface(fn=crowd, inputs=inputs, outputs=outputs, allow_flagging="never", examples=["Example_1.jpg", "Example_2.jpg", "Example_3.jpg"], title = "Crowd Counting Model", description = "Interface").launch(inbrowser=True)