Spaces:
Paused
Paused
# everything that can improve v-prediction model | |
# dynamic scaling + tsnr + beta modifier + dynamic cfg rescale + ... | |
# written by lvmin at stanford 2024 | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from functools import partial | |
from diffusers_vdm.basics import extract_into_tensor | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
def rescale_zero_terminal_snr(betas): | |
# Convert betas to alphas_bar_sqrt | |
alphas = 1.0 - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_bar_sqrt = np.sqrt(alphas_cumprod) | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].copy() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].copy() | |
# Shift so the last timestep is zero. | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
# Scale so the first timestep is back to the old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
alphas = np.concatenate([alphas_bar[0:1], alphas]) | |
betas = 1 - alphas | |
return betas | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
class SamplerDynamicTSNR(torch.nn.Module): | |
def __init__(self, unet, terminal_scale=0.7): | |
super().__init__() | |
self.unet = unet | |
self.is_v = True | |
self.n_timestep = 1000 | |
self.guidance_rescale = 0.7 | |
linear_start = 0.00085 | |
linear_end = 0.012 | |
betas = np.linspace(linear_start ** 0.5, linear_end ** 0.5, self.n_timestep, dtype=np.float64) ** 2 | |
betas = rescale_zero_terminal_snr(betas) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod).to(unet.device)) | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)).to(unet.device)) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)).to(unet.device)) | |
# Dynamic TSNR | |
turning_step = 400 | |
scale_arr = np.concatenate([ | |
np.linspace(1.0, terminal_scale, turning_step), | |
np.full(self.n_timestep - turning_step, terminal_scale) | |
]) | |
self.register_buffer('scale_arr', to_torch(scale_arr).to(unet.device)) | |
def predict_eps_from_z_and_v(self, x_t, t, v): | |
return self.sqrt_alphas_cumprod[t] * v + self.sqrt_one_minus_alphas_cumprod[t] * x_t | |
def predict_start_from_z_and_v(self, x_t, t, v): | |
return self.sqrt_alphas_cumprod[t] * x_t - self.sqrt_one_minus_alphas_cumprod[t] * v | |
def q_sample(self, x0, t, noise): | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x0.shape) * x0 + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) | |
def get_v(self, x0, t, noise): | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x0.shape) * noise - | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x0.shape) * x0) | |
def dynamic_x0_rescale(self, x0, t): | |
return x0 * extract_into_tensor(self.scale_arr, t, x0.shape) | |
def get_ground_truth(self, x0, noise, t): | |
x0 = self.dynamic_x0_rescale(x0, t) | |
xt = self.q_sample(x0, t, noise) | |
target = self.get_v(x0, t, noise) if self.is_v else noise | |
return xt, target | |
def get_uniform_trailing_steps(self, steps): | |
c = self.n_timestep / steps | |
ddim_timesteps = np.flip(np.round(np.arange(self.n_timestep, 0, -c))).astype(np.int64) | |
steps_out = ddim_timesteps - 1 | |
return torch.tensor(steps_out, device=self.unet.device, dtype=torch.long) | |
def forward(self, latent_shape, steps, extra_args, progress_tqdm=None): | |
bar = tqdm if progress_tqdm is None else progress_tqdm | |
eta = 1.0 | |
timesteps = self.get_uniform_trailing_steps(steps) | |
timesteps_prev = torch.nn.functional.pad(timesteps[:-1], pad=(1, 0)) | |
x = torch.randn(latent_shape, device=self.unet.device, dtype=self.unet.dtype) | |
alphas = self.alphas_cumprod[timesteps] | |
alphas_prev = self.alphas_cumprod[timesteps_prev] | |
scale_arr = self.scale_arr[timesteps] | |
scale_arr_prev = self.scale_arr[timesteps_prev] | |
sqrt_one_minus_alphas = torch.sqrt(1 - alphas) | |
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy())) | |
s_in = x.new_ones((x.shape[0])) | |
s_x = x.new_ones((x.shape[0], ) + (1, ) * (x.ndim - 1)) | |
for i in bar(range(len(timesteps))): | |
index = len(timesteps) - 1 - i | |
t = timesteps[index].item() | |
model_output = self.model_apply(x, t * s_in, **extra_args) | |
if self.is_v: | |
e_t = self.predict_eps_from_z_and_v(x, t, model_output) | |
else: | |
e_t = model_output | |
a_prev = alphas_prev[index].item() * s_x | |
sigma_t = sigmas[index].item() * s_x | |
if self.is_v: | |
pred_x0 = self.predict_start_from_z_and_v(x, t, model_output) | |
else: | |
a_t = alphas[index].item() * s_x | |
sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
# dynamic rescale | |
scale_t = scale_arr[index].item() * s_x | |
prev_scale_t = scale_arr_prev[index].item() * s_x | |
rescale = (prev_scale_t / scale_t) | |
pred_x0 = pred_x0 * rescale | |
dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t | |
noise = sigma_t * torch.randn_like(x) | |
x = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x | |
def model_apply(self, x, t, **extra_args): | |
x = x.to(device=self.unet.device, dtype=self.unet.dtype) | |
cfg_scale = extra_args['cfg_scale'] | |
p = self.unet(x, t, **extra_args['positive']) | |
n = self.unet(x, t, **extra_args['negative']) | |
o = n + cfg_scale * (p - n) | |
o_better = rescale_noise_cfg(o, p, guidance_rescale=self.guidance_rescale) | |
return o_better | |