Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import os
|
@@ -18,8 +22,8 @@ from gradio_litmodel3d import LitModel3D
|
|
18 |
# we load the pre-trained model from HF
|
19 |
class LRMGeneratorWrapper:
|
20 |
def __init__(self):
|
21 |
-
self.config = AutoConfig.from_pretrained("
|
22 |
-
self.model = AutoModel.from_pretrained("
|
23 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
self.model.to(self.device)
|
25 |
self.model.eval()
|
@@ -274,4 +278,4 @@ with gr.Blocks() as demo:
|
|
274 |
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
|
275 |
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
|
276 |
|
277 |
-
demo.launch(share=False)
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
import os
|
|
|
22 |
# we load the pre-trained model from HF
|
23 |
class LRMGeneratorWrapper:
|
24 |
def __init__(self):
|
25 |
+
self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
26 |
+
self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
27 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
28 |
self.model.to(self.device)
|
29 |
self.model.eval()
|
|
|
278 |
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
|
279 |
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
|
280 |
|
281 |
+
demo.launch(share=False)
|