from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "meta-llama/Meta-Llama-3-8B-Instruct" ) punctuation_marks = [".", "!", "?"] def generate( prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.8, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text while output and output[-1] not in punctuation_marks: output = output[:-1] # yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.2, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.80, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title= "🦙 Have a chat with llama 3 8B 🦙", additional_inputs=additional_inputs, examples=[ ["Can you explain briefly to me what is the Python programming language?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'."], ], cache_examples=True ).launch(show_api=False)