File size: 11,125 Bytes
97069e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os, errno, numpy, torch, csv, re, shutil, os, zipfile
from collections import OrderedDict
from torchvision.datasets.folder import default_loader
from torchvision import transforms
from scipy import ndimage
from urllib.request import urlopen

class BrodenDataset(torch.utils.data.Dataset):
    '''
    A multicategory segmentation data set.

    Returns three streams:
    (1) The image (3, h, w).
    (2) The multicategory segmentation (labelcount, h, w).
    (3) A bincount of pixels in the segmentation (labelcount).

    Net dissect also assumes that the dataset object has three properties
    with human-readable labels:

    ds.labels = ['red', 'black', 'car', 'tree', 'grid', ...]
    ds.categories = ['color', 'part', 'object', 'texture']
    ds.label_category = [0, 0, 2, 2, 3, ...] # The category for each label
    '''
    def __init__(self, directory='dataset/broden', resolution=384,
            split='train', categories=None,
            transform=None, transform_segment=None,
            download=False, size=None, include_bincount=True,
            broden_version=1, max_segment_depth=6):
        assert resolution in [224, 227, 384]
        if download:
            ensure_broden_downloaded(directory, resolution, broden_version)
        self.directory = directory
        self.resolution = resolution
        self.resdir = os.path.join(directory, 'broden%d_%d' %
                (broden_version, resolution))
        self.loader = default_loader
        self.transform = transform
        self.transform_segment = transform_segment
        self.include_bincount = include_bincount
        # The maximum number of multilabel layers that coexist at an image.
        self.max_segment_depth = max_segment_depth
        with open(os.path.join(self.resdir, 'category.csv'),
                encoding='utf-8') as f:
            self.category_info = OrderedDict()
            for row in csv.DictReader(f):
                self.category_info[row['name']] = row
        if categories is not None:
            # Filter out unused categories
            categories = set([c for c in categories if c in self.category_info])
            for cat in list(self.category_info.keys()):
                if cat not in categories:
                    del self.category_info[cat]
        categories = list(self.category_info.keys())
        self.categories = categories

        # Filter out unneeded images.
        with open(os.path.join(self.resdir, 'index.csv'),
                encoding='utf-8') as f:
            all_images = [decode_index_dict(r) for r in csv.DictReader(f)]
        self.image = [row for row in all_images
            if index_has_any_data(row, categories) and row['split'] == split]
        if size is not None:
            self.image = self.image[:size]
        with open(os.path.join(self.resdir, 'label.csv'),
                encoding='utf-8') as f:
            self.label_info = build_dense_label_array([
                decode_label_dict(r) for r in csv.DictReader(f)])
            self.labels = [l['name'] for l in self.label_info]
        # Build dense remapping arrays for labels, so that you can
        # get dense ranges of labels for each category.
        self.category_map = {}
        self.category_unmap = {}
        self.category_label = {}
        for cat in self.categories:
            with open(os.path.join(self.resdir, 'c_%s.csv' % cat),
                    encoding='utf-8') as f:
                c_data = [decode_label_dict(r) for r in csv.DictReader(f)]
            self.category_unmap[cat], self.category_map[cat] = (
                    build_numpy_category_map(c_data))
            self.category_label[cat] = build_dense_label_array(
                    c_data, key='code')
        self.num_labels = len(self.labels)
        # Primary categories for each label is the category in which it
        # appears with the maximum coverage.
        self.label_category = numpy.zeros(self.num_labels, dtype=int)
        for i in range(self.num_labels):
            maxcoverage, self.label_category[i] = max(
               (self.category_label[cat][self.category_map[cat][i]]['coverage']
                    if i < len(self.category_map[cat])
                       and self.category_map[cat][i] else 0, ic)
                for ic, cat in enumerate(categories))

    def __len__(self):
        return len(self.image)

    def __getitem__(self, idx):
        record = self.image[idx]
        # example record: {
        #    'image': 'opensurfaces/25605.jpg', 'split': 'train',
        #    'ih': 384, 'iw': 384, 'sh': 192, 'sw': 192,
        #    'color': ['opensurfaces/25605_color.png'],
        #    'object': [], 'part': [],
        #    'material': ['opensurfaces/25605_material.png'],
        #    'scene': [], 'texture': []}
        image = self.loader(os.path.join(self.resdir, 'images',
            record['image']))
        segment = numpy.zeros(shape=(self.max_segment_depth,
            record['sh'], record['sw']), dtype=int)
        if self.include_bincount:
            bincount = numpy.zeros(shape=(self.num_labels,), dtype=int)
        depth = 0
        for cat in self.categories:
            for layer in record[cat]:
                if isinstance(layer, int):
                    segment[depth,:,:] = layer
                    if self.include_bincount:
                        bincount[layer] += segment.shape[1] * segment.shape[2]
                else:
                    png = numpy.asarray(self.loader(os.path.join(
                        self.resdir, 'images', layer)))
                    segment[depth,:,:] = png[:,:,0] + png[:,:,1] * 256
                    if self.include_bincount:
                        bincount += numpy.bincount(segment[depth,:,:].flatten(),
                            minlength=self.num_labels)
                depth += 1
        if self.transform:
            image = self.transform(image)
        if self.transform_segment:
            segment = self.transform_segment(segment)
        if self.include_bincount:    
            bincount[0] = 0
            return (image, segment, bincount)
        else:
            return (image, segment)

def build_dense_label_array(label_data, key='number', allow_none=False):
    '''
    Input: set of rows with 'number' fields (or another field name key).
    Output: array such that a[number] = the row with the given number.
    '''
    result = [None] * (max([d[key] for d in label_data]) + 1)
    for d in label_data:
        result[d[key]] = d
    # Fill in none
    if not allow_none:
        example = label_data[0]
        def make_empty(k):
            return dict((c, k if c is key else type(v)())
                    for c, v in example.items())
        for i, d in enumerate(result):
            if d is None:
                result[i] = dict(make_empty(i))
    return result

def build_numpy_category_map(map_data, key1='code', key2='number'):
    '''
    Input: set of rows with 'number' fields (or another field name key).
    Output: array such that a[number] = the row with the given number.
    '''
    results = list(numpy.zeros((max([d[key] for d in map_data]) + 1),
            dtype=numpy.int16) for key in (key1, key2))
    for d in map_data:
        results[0][d[key1]] = d[key2]
        results[1][d[key2]] = d[key1]
    return results

def index_has_any_data(row, categories):
    for c in categories:
        for data in row[c]:
            if data: return True
    return False

def decode_label_dict(row):
    result = {}
    for key, val in row.items():
        if key == 'category':
            result[key] = dict((c, int(n))
                for c, n in [re.match('^([^(]*)\(([^)]*)\)$', f).groups()
                    for f in val.split(';')])
        elif key == 'name':
            result[key] = val
        elif key == 'syns':
            result[key] = val.split(';')
        elif re.match('^\d+$', val):
            result[key] = int(val)
        elif re.match('^\d+\.\d*$', val):
            result[key] = float(val)
        else:
            result[key] = val
    return result

def decode_index_dict(row):
    result = {}
    for key, val in row.items():
        if key in ['image', 'split']:
            result[key] = val
        elif key in ['sw', 'sh', 'iw', 'ih']:
            result[key] = int(val)
        else:
            item = [s for s in val.split(';') if s]
            for i, v in enumerate(item):
                if re.match('^\d+$', v):
                    item[i] = int(v)
            result[key] = item
    return result

class ScaleSegmentation:
    '''
    Utility for scaling segmentations, using nearest-neighbor zooming.
    '''
    def __init__(self, target_height, target_width):
        self.target_height = target_height
        self.target_width = target_width
    def __call__(self, seg):
        ratio = (1, self.target_height / float(seg.shape[1]),
                self.target_width / float(seg.shape[2]))
        return ndimage.zoom(seg, ratio, order=0)

def scatter_batch(seg, num_labels, omit_zero=True, dtype=torch.uint8):
    '''
    Utility for scattering semgentations into a one-hot representation.
    '''
    result = torch.zeros(*((seg.shape[0], num_labels,) + seg.shape[2:]),
            dtype=dtype, device=seg.device)
    result.scatter_(1, seg, 1)
    if omit_zero:
        result[:,0] = 0
    return result

def ensure_broden_downloaded(directory, resolution, broden_version=1):
    assert resolution in [224, 227, 384]
    baseurl = 'http://netdissect.csail.mit.edu/data/'
    dirname = 'broden%d_%d' % (broden_version, resolution)
    if os.path.isfile(os.path.join(directory, dirname, 'index.csv')):
        return # Already downloaded
    zipfilename = 'broden1_%d.zip' % resolution
    download_dir = os.path.join(directory, 'download')
    os.makedirs(download_dir, exist_ok=True)
    full_zipfilename = os.path.join(download_dir, zipfilename)
    if not os.path.exists(full_zipfilename):
        url = '%s/%s' % (baseurl, zipfilename)
        print('Downloading %s' % url)
        data = urlopen(url)
        with open(full_zipfilename, 'wb') as f:
            f.write(data.read())
    print('Unzipping %s' % zipfilename)
    with zipfile.ZipFile(full_zipfilename, 'r') as zip_ref:
        zip_ref.extractall(directory)
    assert os.path.isfile(os.path.join(directory, dirname, 'index.csv'))

def test_broden_dataset():
    '''
    Testing code.
    '''
    bds = BrodenDataset('dataset/broden', resolution=384,
            transform=transforms.Compose([
                        transforms.Resize(224),
                        transforms.ToTensor()]),
            transform_segment=transforms.Compose([
                        ScaleSegmentation(224, 224)
                        ]),
            include_bincount=True)
    loader = torch.utils.data.DataLoader(bds, batch_size=100, num_workers=24)
    for i in range(1,20):
        print(bds.label[i]['name'],
                list(bds.category.keys())[bds.primary_category[i]])
    for i, (im, seg, bc) in enumerate(loader):
        print(i, im.shape, seg.shape, seg.max(), bc.shape)

if __name__ == '__main__':
    test_broden_dataset()