File size: 4,584 Bytes
97d35d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
from source_code import text_completion, chat, GEC, paraphrase, contextual_answer, summarize, improvements
st.title("AI21 Studio Jurassic")

st.image(
    image="assets\jurassic.jpg",
    caption="Jurassic",
)

st.sidebar.title("Select your preferred tasks")

jurassic_models = [
    "j2-light",
    "j2-ultra",
    "j2-mid",
]
tasks = [
    "Generic",
    "Specific"
]

# task = st.sidebar.selectbox(
#     label="Select your Model",
#     options = tasks
# )

disabled = False
# if task == "Generic":
#     disabled = False

# task_disable = False
# if task == "Specific":
#     task_disable = True


# generic_tasks = [
#     "Text Completion",
#     # "Chat"
# ]

specific_tasks = [
    # "Contextual Answers",
    "Paraphrase",
    "Summarize",
    "Grammetical Error Corrections",
    "Text Improvements"
]

# choose_task = generic_tasks
# if task == "Specific":
#     choose_task = specific_tasks  

choose_task = specific_tasks  

choose = st.sidebar.selectbox(
    label="Select your tasks",
    options = choose_task,

)

# model = st.sidebar.selectbox(
#     label="Select your Model",
#     options = jurassic_models,
#     disabled=disabled
# )


# numResults = st.sidebar.number_input(
#     label="Select Number of results",
#     min_value=1,
#     max_value=5,
#     value=1,
#     disabled=disabled
# )

# maxTokens = st.sidebar.number_input(
#     label="Max Number of Tokens to generate",
#     min_value=32,
#     max_value=2048,
#     value=200,
#     step=2,
#     disabled=disabled
# )

# temperature = st.sidebar.slider(
#     label="Temperature",
#     min_value=0.1,
#     max_value=1.0,
#     value=0.5,
#     step=0.1,
#     disabled=disabled
# )

# topP = st.sidebar.slider(
#     label="Top P",
#     min_value=0.1,
#     max_value=1.0,
#     value=0.6,
#     step=0.1,
#     disabled=disabled
# )

# topKReturn = st.sidebar.slider(
#     label="Top K",
#     min_value=1,
#     max_value=10,
#     value=5,
#     step=1,
#     disabled=disabled
# )

# context = st.sidebar.text_input(
#     label="Context",
# )

# if choose == "Chat":
#     question = st.chat_input(key="Question")
#     if context is None:
#         context = "Everything"
#     # template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{question}.\n<|assistant|>"
#     template = f"{context}\n{question}"
#     if "messages" not in st.session_state:
#         st.session_state.messages = []
#     for message in st.session_state.messages:
#         with st.chat_message(message.get('role')):
#             st.write(message.get("content"))
#     st.session_state.messages.append(
#         {
#             "role":"user",
#             "content": f"Question: {question}"
#         }
#     )
#     if question:
#         result = chat(model, template, numResults, maxTokens, temperature, topKReturn, topP)
#         with st.chat_message("user"):
#             st.write(f"Context: {context}\n\nQuestion: {question}")

#         if question.lower() == "clear":
#             del st.session_state.messages

#         st.session_state.messages.append(
#             {
#                 "role": "assistant",
#                 "content": result
#             }
#         )
#         with st.chat_message('User'):
#             st.write(f"Context: {context}\n\nQuestion: {question}")
#         with st.chat_message('assistant'):
#             st.markdown(result)
if 0 > 1:
    pass
else:
    question = st.text_area(label="Question")
    # if context is None:
    #     context = "Everything"
    # template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{question}.\n<|assistant|>"
    
    # if choose == "Text Completion":
    #     if question:
    #         result = text_completion(model, template, numResults, maxTokens, temperature, topKReturn, topP)
    #         st.markdown(result)
    # if choose == "Contextual Answers":
    #     if question:
    #         result = contextual_answer(context, question)
    #         st.markdown(result)
    if choose == "Paraphrase":
        if question:
            result = paraphrase(question)
            st.markdown(result)
    elif choose == "Summarize":
        if question:
            result = summarize(question)
            st.markdown(result)
    elif choose == "Grammetical Error Corrections":
        if question:
            result = GEC(question)
            st.markdown(result)
    elif choose == "Text Improvements":
        if question:
            result = improvements(question)
            st.markdown(result)