Spaces:
Runtime error
Runtime error
import streamlit as st | |
from source_code import text_completion, chat, GEC, paraphrase, contextual_answer, summarize, improvements | |
st.title("AI21 Studio Jurassic") | |
st.image( | |
image="jurassic.jpg", | |
caption="Jurassic", | |
) | |
st.sidebar.title("Select your preferred tasks") | |
jurassic_models = [ | |
"j2-light", | |
"j2-ultra", | |
"j2-mid", | |
] | |
tasks = [ | |
"Generic", | |
"Specific" | |
] | |
# task = st.sidebar.selectbox( | |
# label="Select your Model", | |
# options = tasks | |
# ) | |
disabled = False | |
# if task == "Generic": | |
# disabled = False | |
# task_disable = False | |
# if task == "Specific": | |
# task_disable = True | |
# generic_tasks = [ | |
# "Text Completion", | |
# # "Chat" | |
# ] | |
specific_tasks = [ | |
# "Contextual Answers", | |
"Paraphrase", | |
"Summarize", | |
"Grammetical Error Corrections", | |
"Text Improvements" | |
] | |
# choose_task = generic_tasks | |
# if task == "Specific": | |
# choose_task = specific_tasks | |
choose_task = specific_tasks | |
choose = st.sidebar.selectbox( | |
label="Select your tasks", | |
options = choose_task, | |
) | |
# model = st.sidebar.selectbox( | |
# label="Select your Model", | |
# options = jurassic_models, | |
# disabled=disabled | |
# ) | |
# numResults = st.sidebar.number_input( | |
# label="Select Number of results", | |
# min_value=1, | |
# max_value=5, | |
# value=1, | |
# disabled=disabled | |
# ) | |
# maxTokens = st.sidebar.number_input( | |
# label="Max Number of Tokens to generate", | |
# min_value=32, | |
# max_value=2048, | |
# value=200, | |
# step=2, | |
# disabled=disabled | |
# ) | |
# temperature = st.sidebar.slider( | |
# label="Temperature", | |
# min_value=0.1, | |
# max_value=1.0, | |
# value=0.5, | |
# step=0.1, | |
# disabled=disabled | |
# ) | |
# topP = st.sidebar.slider( | |
# label="Top P", | |
# min_value=0.1, | |
# max_value=1.0, | |
# value=0.6, | |
# step=0.1, | |
# disabled=disabled | |
# ) | |
# topKReturn = st.sidebar.slider( | |
# label="Top K", | |
# min_value=1, | |
# max_value=10, | |
# value=5, | |
# step=1, | |
# disabled=disabled | |
# ) | |
# context = st.sidebar.text_input( | |
# label="Context", | |
# ) | |
# if choose == "Chat": | |
# question = st.chat_input(key="Question") | |
# if context is None: | |
# context = "Everything" | |
# # template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{question}.\n<|assistant|>" | |
# template = f"{context}\n{question}" | |
# if "messages" not in st.session_state: | |
# st.session_state.messages = [] | |
# for message in st.session_state.messages: | |
# with st.chat_message(message.get('role')): | |
# st.write(message.get("content")) | |
# st.session_state.messages.append( | |
# { | |
# "role":"user", | |
# "content": f"Question: {question}" | |
# } | |
# ) | |
# if question: | |
# result = chat(model, template, numResults, maxTokens, temperature, topKReturn, topP) | |
# with st.chat_message("user"): | |
# st.write(f"Context: {context}\n\nQuestion: {question}") | |
# if question.lower() == "clear": | |
# del st.session_state.messages | |
# st.session_state.messages.append( | |
# { | |
# "role": "assistant", | |
# "content": result | |
# } | |
# ) | |
# with st.chat_message('User'): | |
# st.write(f"Context: {context}\n\nQuestion: {question}") | |
# with st.chat_message('assistant'): | |
# st.markdown(result) | |
if 0 > 1: | |
pass | |
else: | |
question = st.text_area(label="Question") | |
# if context is None: | |
# context = "Everything" | |
# template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{question}.\n<|assistant|>" | |
# if choose == "Text Completion": | |
# if question: | |
# result = text_completion(model, template, numResults, maxTokens, temperature, topKReturn, topP) | |
# st.markdown(result) | |
# if choose == "Contextual Answers": | |
# if question: | |
# result = contextual_answer(context, question) | |
# st.markdown(result) | |
if choose == "Paraphrase": | |
if question: | |
result = paraphrase(question) | |
st.markdown(result) | |
elif choose == "Summarize": | |
if question: | |
result = summarize(question) | |
st.markdown(result) | |
elif choose == "Grammetical Error Corrections": | |
if question: | |
result = GEC(question) | |
st.markdown(result) | |
elif choose == "Text Improvements": | |
if question: | |
result = improvements(question) | |
st.markdown(result) | |