|
import os |
|
import streamlit as st |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.chains import LLMChain |
|
|
|
from llm import similarity |
|
from file_manipulation import make_directory_if_not_exists |
|
|
|
from models import return_models, return_text2text_generation_models, return_task_name, return_text_generation_models |
|
class LLM_Langchain(): |
|
def __init__(self): |
|
dummy_parent = "google" |
|
self.models_count = return_text2text_generation_models(dummy_parent, True) + return_text_generation_models(dummy_parent, True) |
|
st.warning("Warning: Some models may not work and some models may require GPU to run") |
|
st.text(f"As of now there are {self.models_count} model available") |
|
st.text("Made with Langchain, StreamLit, Hugging Face and 💖") |
|
st.header('🦜🔗 One stop for Open Source Models') |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.task_name = st.sidebar.selectbox( |
|
label = "Choose the task you want to perform", |
|
options = return_task_name(), |
|
help="Choose your open source LLM to get started" |
|
) |
|
if self.task_name is None: |
|
model_parent_visibility = True |
|
else: |
|
model_parent_visibility = False |
|
|
|
model_parent_options = return_models(self.task_name) |
|
model_parent = st.sidebar.selectbox( |
|
label = "Choose your Source", |
|
options = model_parent_options, |
|
help="Choose your source of models", |
|
disabled=model_parent_visibility |
|
) |
|
|
|
if model_parent is None: |
|
model_name_visibility = True |
|
else: |
|
model_name_visibility = False |
|
if self.task_name == "text2text-generation": |
|
options = return_text2text_generation_models(model_parent) |
|
else: |
|
options = return_text_generation_models(model_parent) |
|
self.model_name = st.sidebar.selectbox( |
|
label = "Choose your Models", |
|
options = options, |
|
help="Choose your open source LLM to get started", |
|
disabled=model_name_visibility |
|
) |
|
|
|
self.temperature = st.sidebar.slider( |
|
label="Temperature", |
|
min_value=0.1, |
|
max_value=1.0, |
|
step=0.1, |
|
value=0.9, |
|
help="Set the temperature to get accurate results" |
|
) |
|
|
|
self.max_token_length = st.sidebar.slider( |
|
label="Token Length", |
|
min_value=32, |
|
max_value=1024, |
|
step=32, |
|
value=1024, |
|
help="Set the max tokens to get accurate results" |
|
) |
|
|
|
|
|
self.model_kwargs = { |
|
"temperature": self.temperature, |
|
"max_new_tokens": self.max_token_length |
|
} |
|
|
|
|
|
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.getenv("HF_KEY") |
|
|
|
|
|
def generate_response(self, input_text, context): |
|
|
|
template = f"<|system|>\nYou are a intelligent chatbot and expertise in {context}.</s>\n<|user|>\n{input_text}.\n<|assistant|>" |
|
llm = HuggingFaceHub( |
|
repo_id = self.model_name, |
|
model_kwargs = self.model_kwargs |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
result = llm(template) |
|
|
|
return result |
|
|
|
|
|
def radio_button(self): |
|
options = ['FineTune', 'Inference'] |
|
selected_option = st.radio( |
|
label="Choose your options", |
|
options=options |
|
) |
|
return selected_option |
|
|
|
|
|
def pdf_uploader(self): |
|
if self.selected_option == "Inference": |
|
self.uploader_visibility = True |
|
else: |
|
self.uploader_visibility = False |
|
|
|
self.file_upload_status = st.file_uploader( |
|
label="Upload PDF file", |
|
disabled=self.uploader_visibility |
|
) |
|
make_directory_if_not_exists('assets/') |
|
|
|
if self.file_upload_status is not None: |
|
self.pdf_file_path = f"assets/{self.file_upload_status.name}" |
|
|
|
with open(self.pdf_file_path, "wb") as f: |
|
f.write(self.file_upload_status.getbuffer()) |
|
st.write("File Uploaded Successfully") |
|
|
|
def form_data(self): |
|
|
|
try: |
|
|
|
|
|
|
|
self.selected_option = self.radio_button() |
|
self.pdf_uploader() |
|
|
|
if self.selected_option == "FineTune": |
|
if self.file_upload_status is None: |
|
text_input_visibility = True |
|
else: |
|
text_input_visibility = False |
|
else: |
|
text_input_visibility = False |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
st.write(f"You are using {self.model_name} model") |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message.get('role')): |
|
st.write(message.get("content")) |
|
|
|
context = st.sidebar.text_input( |
|
label="Context", |
|
help="Context lets you know on what the answer should be generated" |
|
) |
|
text = st.chat_input(disabled=text_input_visibility) |
|
|
|
if text: |
|
st.session_state.messages.append( |
|
{ |
|
"role":"user", |
|
"content": text |
|
} |
|
) |
|
with st.chat_message("user"): |
|
st.write(text) |
|
|
|
if text.lower() == "clear": |
|
del st.session_state.messages |
|
return |
|
if self.selected_option == 'FineTune': |
|
result = similarity(self.pdf_file_path, self.model_name, self.model_kwargs, text) |
|
else: |
|
result = self.generate_response(text, context) |
|
st.session_state.messages.append( |
|
{ |
|
"role": "assistant", |
|
"content": result |
|
} |
|
) |
|
with st.chat_message('assistant'): |
|
st.markdown(result) |
|
|
|
except Exception as e: |
|
st.error(e, icon="🚨") |
|
|
|
model = LLM_Langchain() |
|
model.form_data() |