Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer | |
# Assuming you have loaded your model and tokenizer | |
# Replace this with your actual model and tokenizer | |
# Define the model function for Gradio | |
def generate_summary(input_text): | |
# # Tokenize the input text | |
# inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) | |
# # Generate summary using the model | |
# outputs = model.generate(**inputs) | |
# # Decode the generated summary | |
# summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# return summary | |
# Create a text generation pipeline | |
# text_generation_pipeline = pipeline("Falconsai/medical_summarization", model=model, tokenizer=tokenizer) | |
tokenizer = AutoTokenizer.from_pretrained("Shariar00/medical_summarization_finetune_medical_qa") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Shariar00/medical_summarization_finetune_medical_qa") | |
text_generation_pipeline = pipeline("summarization", model=model, tokenizer=tokenizer) | |
# Generate text using the pipeline | |
prompt = "Hello, I am feeling very pain on my leg, I can not walk properly. I have some knee pain also. what can I do now?" | |
output = text_generation_pipeline(input_text, max_length=512, num_return_sequences=1) | |
# Print the generated text | |
generated_text = output[0] | |
return generated_text | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_summary, | |
inputs="text", | |
outputs="text", | |
# Set to True for live updates without restarting the server | |
) | |
# Launch the Gradio interface | |
iface.launch() | |