File size: 4,174 Bytes
a0c33a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fdb73
a0c33a2
 
 
 
 
 
 
 
 
 
 
71fdb73
 
 
 
 
a0c33a2
 
 
 
 
 
 
 
71fdb73
a0c33a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import pickle
import torch
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
import tensorflow as tf
from tensorflow.python.lib.io import file_io
from nltk.tokenize import sent_tokenize


import io








    
tf.compat.v1.disable_eager_execution()
# Let's load the model and the tokenizer 
model_name = "human-centered-summarization/financial-summarization-pegasus"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model2 = PegasusForConditionalGeneration.from_pretrained(model_name)
    

#tokenizer = AutoTokenizer.from_pretrained(checkpoint)
#model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)


import nltk
from finbert_embedding.embedding import FinbertEmbedding
import pandas as pd
from nltk.cluster import KMeansClusterer
import numpy as np
import os
from scipy.spatial import distance_matrix
from tensorflow.python.lib.io import file_io
import pickle

nltk.download('punkt')


def pegasus(text):
    '''A function to obtain summaries for each tokenized sentence.
    It returns a summarized document as output''' 

    import nltk
    nltk.download('punkt')

    import os
    data_path = "/tmp/"
    if not os.path.exists(data_path):
        os.makedirs(data_path)
    input_ = "/tmp/input.txt"

    with open(input_, "w") as file:
        file.write(text)
    # read the written txt into a variable
    with open(input_ , 'r') as f:
        text_ = f.read()

    def tokenized_sentences(file):
        '''A function to generate chunks of sentences and texts.
        Returns tokenized texts'''
        # Create empty arrays
        tokenized_sentences = []
        sentences = []
        length = 0
        for sentence in sent_tokenize(file):
            length += len(sentence)
            # 512 is the maximum input length for the Pegasus model
            if length < 512:
                sentences.append(sentence)
            else:
                tokenized_sentences.append(sentences)
                sentences = [sentence]
                length = len(sentence)
        
        sentences = [sentence.strip() for sentence in sentences]
        size = len(sentences)
        # Append all tokenized sentences
        if sentences:
            tokenized_sentences.append(sentences)
            return tokenized_sentences

    tokenized = tokenized_sentences(text_)
    # Use GPU if available
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    global summary
    # Create an empty array for all summaries
    summary = []
    if size <= 4: 
       max_length= size
    else:
       max_length = size//4

    # Loop to encode tokens, to generate abstractive summary and finally decode tokens
    for token in tokenized:
        # Encoding
        inputs = tokenizer.encode(' '.join(token), truncation=True, return_tensors='pt')
        # Use CPU or GPU
        inputs = inputs.to(device)
        # Get summaries from transformer model
        all_summary = model2.to(device).generate(inputs,do_sample=True, 
                                                max_length=max_length, top_k=50, top_p=0.95,
                                                num_beams = 5, early_stopping=True)
#                                                 num_return_sequences=5)
#                                                 length_penalty=0.2, no_repeat_ngram_size=2
#                                                 min_length=10,
#                                                 max_length=50)
        # Decoding
        output = [tokenizer.decode(each_summary, skip_special_tokens=True, clean_up_tokenization_spaces=False) for each_summary in all_summary]
        # Append each output to array
        summary.append(output)
    # Get final summary 
    summary = [sentence for each in summary for sentence in each]
    final = "".join(summary)
    
    return final


import gradio as gr



                     
interface1 = gr.Interface(fn=pegasus, 
                     inputs =gr.inputs.Textbox(lines=15,placeholder="Enter your text !!",label='Input-10k Sections'),
                     outputs=gr.outputs.Textbox(label='Output- Pegasus')).launch()