Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import clip | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
def predict(image, labels): | |
labels = labels.split(',') | |
image = preprocess(image).unsqueeze(0).to(device) | |
text = clip.tokenize([f"a photo of a {c}" for c in labels]).to(device) | |
with torch.inference_mode(): | |
logits_per_image, logits_per_text = model(image, text) | |
probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
return {k: float(v) for k, v in zip(labels, probs[0])} | |
# probs = predict(Image.open("../CLIP/CLIP.png"), "cat, dog, ball") | |
# print(probs) | |
gr.Interface(fn=predict, | |
inputs=[ | |
gr.inputs.Image(label="Image to classify.", type="pil"), | |
gr.inputs.Textbox(lines=1, label="Comma separated classes", placeholder="Enter your classes separated by ','",)], | |
theme="grass", | |
outputs="label", | |
description="Zero Shot Image classification..").launch() | |