File size: 9,596 Bytes
d10c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dac5a69
 
16925eb
9d1687b
a574374
16925eb
9d1687b
a574374
16925eb
9d1687b
 
 
a574374
16925eb
9d1687b
10ed629
6ccc433
16925eb
a574374
dac5a69
 
9ef0c39
d10c5e3
9ef0c39
 
 
d10c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59afb84
 
 
 
d10c5e3
6e50b93
d10c5e3
59afb84
 
 
 
6e50b93
d10c5e3
9ef0c39
d10c5e3
 
 
 
 
 
 
 
 
9d1687b
 
9ef0c39
8824bce
9ef0c39
9d1687b
 
8824bce
9ef0c39
8824bce
9ef0c39
 
 
d10c5e3
 
9ef0c39
 
 
9d1687b
9ef0c39
dac5a69
9ef0c39
9d1687b
 
 
d10c5e3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import spaces
from styletts2 import tts
import re
import numpy as np
from scipy.io.wavfile import write
import nltk

nltk.download('punkt')
from nltk.tokenize import word_tokenize

import torch

import phonemizer  # en-us

INTRO = """
<style>

  .TitleContainer {
    background-color: #ffff;
    margin-bottom: 0rem;
    margin-left: auto;
    margin-right: auto;
    width: 40%;
    height: 30%;
    border-radius: 10rem;
    border: 0.5vw solid #ff593e;
    text-align: center;
    display: flex;
    justify-content: center;
    transition: .6s;
  }

  .TitleContainer:hover {
    transform: scale(1.05);
  }

  .VokanLogo {
    margin: auto;
    display: block;
  }

</style>

<div class="TitleContainer">
      <img src="https://huggingface.co/spaces/ShoukanLabs/Vokan/resolve/main/Vokan.gif" class="VokanLogo">
</div>

<p align="center", style="font-size: 1vw; font-weight: bold; color: #ff593e;">A StyleTTS2 fine-tune, designed for expressiveness.</p>

<hr>
"""

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""

examples = [
        ["./Examples/David Attenborough.wav",
        "An understanding of the natural world is a source of not only great curiosity, but great fulfilment.",
        1, 0.2, 0.5, 1, 200],
        ["./Examples/Linus Tech Tips.wav",
        "sometimes I get so in the zone while building a computer it's like an out of body experience.",
        1, 0.2, 0.8, 2, 200],
        ["./Examples/Melina.wav",
        "If you intend to claim the Frenzied Flame, I ask that you cease. It is not to be meddled with. It is chaos, "
        "devouring life and thought unending. However ruined this world has become, "
        "however mired in torment and despair, life endures.",
        0.95, 0.2, 0.5, 2, 200],
        ["./Examples/Patrick Bateman.wav",
        "My Pain Is Constant And Sharp, And I Do Not Wish For A Better World For Anyone.",
        1, 0.1, 0.3, 2, 200],
        ["./Examples/Furina.ogg",
        "That's more like it! As expected, my dazzling side comes through in any situation.",
        1, 0.2, 0.8, 2, 200]
]


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(c100="#ffd7d1", c200="#ff593e", c300="#ff593e", c400="#ff593e", c50="#fff0f0",
                                c500="#ff593e", c600="#ea580c", c700="#c2410c", c800="#9a3412", c900="#7c2d12",
                                c950="#6c2e12"),
    secondary_hue="orange",
    radius_size=gr.themes.Size(lg="20px", md="8px", sm="6px", xl="30px", xs="4px", xxl="40px", xxs="2px"),
    font=[gr.themes.GoogleFont('M PLUS Rounded 1c'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
).set(
    block_background_fill='*neutral_50'
)

global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us',
                                                     preserve_punctuation=True,
                                                     with_stress=True,
                                                     language_switch="remove-flags",
                                                     tie=False)


def split_and_recombine_text(text, desired_length=200, max_length=300):
    """Split text it into chunks of a desired length trying to keep sentences intact."""
    # normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
    text = re.sub(r'\n\n+', '\n', text)
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'[“”]', '"', text)

    rv = []
    in_quote = False
    current = ""
    split_pos = []
    pos = -1
    end_pos = len(text) - 1

    def seek(delta):
        nonlocal pos, in_quote, current
        is_neg = delta < 0
        for _ in range(abs(delta)):
            if is_neg:
                pos -= 1
                current = current[:-1]
            else:
                pos += 1
                current += text[pos]
            if text[pos] == '"':
                in_quote = not in_quote
        return text[pos]

    def peek(delta):
        p = pos + delta
        return text[p] if p < end_pos and p >= 0 else ""

    def commit():
        nonlocal rv, current, split_pos
        rv.append(current)
        current = ""
        split_pos = []

    while pos < end_pos:
        c = seek(1)
        # do we need to force a split?
        if len(current) >= max_length:
            if len(split_pos) > 0 and len(current) > (desired_length / 2):
                # we have at least one sentence and we are over half the desired length, seek back to the last split
                d = pos - split_pos[-1]
                seek(-d)
            else:
                # no full sentences, seek back until we are not in the middle of a word and split there
                while c not in '!?.\n ' and pos > 0 and len(current) > desired_length:
                    c = seek(-1)
            commit()
        # check for sentence boundaries
        elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')):
            # seek forward if we have consecutive boundary markers but still within the max length
            while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.':
                c = seek(1)
            split_pos.append(pos)
            if len(current) >= desired_length:
                commit()
        # treat end of quote as a boundary if its followed by a space or newline
        elif in_quote and peek(1) == '"' and peek(2) in '\n ':
            seek(2)
            split_pos.append(pos)
    rv.append(current)

    # clean up, remove lines with only whitespace or punctuation
    rv = [s.strip() for s in rv]
    rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)]

    return rv


def text_to_phonemes(text):
    text = text.strip()
    print("Text before phonemization: ", text)
    ps = global_phonemizer.phonemize([text])
    print("Text after phonemization: ", ps)
    ps = word_tokenize(ps[0])
    ps = ' '.join(ps)
    print("Final text after tokenization: ", ps)
    return ps


@spaces.GPU
def generate(audio_path, ins, speed, alpha, beta, embedding, steps=100):
    ref_s = other_tts.compute_style(audio_path)
    print(ref_s.size())
    s_prev = None

    texts = split_and_recombine_text(ins)
    audio = np.array([])

    for i in texts:
        i = text_to_phonemes(i)
        synthaud, s_prev = other_tts.long_inference_segment(i, diffusion_steps=steps,
                                                            alpha=alpha, beta=beta, is_phonemes=True,
                                                            embedding_scale=embedding, prev_s=s_prev, ref_s=ref_s,
                                                            speed=speed, t=0.7)

        n_trim = int(len(synthaud) * 0.008) # 960 samples
        synthaud[:n_trim] = 0
        synthaud[-n_trim:] = 0
        audio = np.concatenate((audio, synthaud))
    scaled = np.int16(audio / np.max(np.abs(audio)) * 32767)

    
    


    return 24000, scaled


if torch.cuda.is_available():
    other_tts = tts.StyleTTS2(model_checkpoint_path='./epoch_2nd_00012.pth', config_path="models/config_ft.yml")
else:
    other_tts = None

with gr.Blocks(theme=theme, js=js_func) as clone:
    gr.HTML(INTRO)
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Textbox(label="Text", info="What do you want Vokan to say? | Longform generation may produce artifacts in between sentences", interactive=True)
            voice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=1000,
                             waveform_options={'waveform_progress_color': '#FF593E'})
            steps = gr.Slider(minimum=3, maximum=200, value=20, step=1, label="Diffusion Steps",
                              info="Higher produces better results typically", interactive=True)
            embscale = gr.Slider(minimum=1, maximum=5, value=2, step=0.1, label="Embedding Scale",
                                 info="Defaults to 2 | high scales may produce unexpected results | Higher scales produce more emotion guided reults", interactive=True)
            alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3 | Lower = More similar in sound to speaker",
                              interactive=True)
            beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7 | Lower = More similar prosody at cost of stability",
                             interactive=True)
            speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.1, label="Speed of speech",
                              info="Defaults to 1", interactive=True)
        with gr.Column(scale=1):
            clbtn = gr.Button("Synthesize", variant="primary")
            claudio = gr.Audio(interactive=False, label="Synthesized Audio",
                               waveform_options={'waveform_progress_color': '#FF593E'})
            clbtn.click(generate, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio],
                        concurrency_limit=15)

            gr.Examples(examples=examples,
                        inputs=[voice, inp, speed, alpha, beta, embscale, steps],
                        outputs=[claudio],
                        fn=generate,
                        cache_examples=True,)

if __name__ == "__main__":
    # demo.queue(api_open=False, max_size=15).launch(show_api=False)
    clone.queue(api_open=False, max_size=15).launch(show_api=False)