Vokan / app.py
Korakoe's picture
Update app.py
75eb448 verified
raw
history blame
7.84 kB
import gradio as gr
import spaces
from styletts2 import tts
import re
import numpy as np
from scipy.io.wavfile import write
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
import torch
import phonemizer # en-us
INTRO = """
<style>
.TitleContainer {
background-color: #ffff;
margin-bottom: 0rem;
margin-left: auto;
margin-right: auto;
width: 40%;
height: 30%;
border-radius: 10rem;
border: 0.5vw solid #ff593e;
text-align: center;
display: flex;
justify-content: center;
transition: .6s;
}
.TitleContainer:hover {
transform: scale(1.05);
}
.VokanLogo {
margin: auto;
display: block;
}
</style>
<div class="TitleContainer">
<img src="https://huggingface.co/spaces/ShoukanLabs/Vokan/resolve/main/Vokan.gif" class="VokanLogo">
</div>
<p align="center", style="font-size: 1vw; font-weight: bold; color: #ff593e;">A StyleTTS2 fine-tune, designed for expressiveness.</p>
<hr>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(c100="#ffd7d1", c200="#ff593e", c300="#ff593e", c400="#ff593e", c50="#fff0f0", c500="#ff593e", c600="#ea580c", c700="#c2410c", c800="#9a3412", c900="#7c2d12", c950="#6c2e12"),
secondary_hue="orange",
radius_size=gr.themes.Size(lg="20px", md="8px", sm="6px", xl="30px", xs="4px", xxl="40px", xxs="2px"),
font=[gr.themes.GoogleFont('M PLUS Rounded 1c'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
).set(
block_background_fill='*neutral_50'
)
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us',
preserve_punctuation=True,
with_stress=True,
language_switch="remove-flags",
tie=False)
def split_and_recombine_text(text, desired_length=200, max_length=300):
"""Split text it into chunks of a desired length trying to keep sentences intact."""
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re.sub(r'\n\n+', '\n', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[β€œβ€]', '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= max_length:
if len(split_pos) > 0 and len(current) > (desired_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in '!?.\n ' and pos > 0 and len(current) > desired_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')):
# seek forward if we have consecutive boundary markers but still within the max length
while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.':
c = seek(1)
split_pos.append(pos)
if len(current) >= desired_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in '\n ':
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)]
return rv
def text_to_phonemes(text):
text = text.strip()
print("Text before phonemization: ", text)
ps = global_phonemizer.phonemize([text])
print("Text after phonemization: ", ps)
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
print("Final text after tokenization: ", ps)
return ps
@spaces.GPU
def generate(audio_path, ins, speed, alpha, beta, embedding, steps=100):
ref_s = other_tts.compute_style(audio_path)
print(ref_s.size())
s_prev = None
texts = split_and_recombine_text(ins)
audio = np.array([])
for i in texts:
i = text_to_phonemes(i)
synthaud, s_prev = other_tts.long_inference_segment(i, diffusion_steps=steps,
alpha=alpha, beta=beta, is_phonemes=True,
embedding_scale=embedding, prev_s=s_prev, ref_s=ref_s,
speed=speed, t=0.7)
audio = np.concatenate((audio, synthaud))
scaled = np.int16(audio / np.max(np.abs(audio)) * 32767)
return 24000, scaled
if torch.cuda.is_available():
other_tts = tts.StyleTTS2(model_checkpoint_path='./epoch_2nd_00012.pth', config_path="models/config_ft.yml")
else:
other_tts = None
with gr.Blocks(theme=theme, js=js_func) as clone:
gr.HTML(INTRO)
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(label="Text", info="What do you want Vokan to say?", interactive=True)
voice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=300, waveform_options={'waveform_progress_color': '#FF593E'})
steps = gr.Slider(minimum=3, maximum=100, value=20, step=1, label="Diffusion Steps", info="Higher produces better results typically", interactive=True)
embscale = gr.Slider(minimum=1, maximum=10, value=2, step=0.1, label="Embedding Scale", info="Defaults to 2 | High scales may produce unexpected results but may produce more emotional texts", interactive=True)
alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3 | Resemblance to speakers voice - lower = more similar", interactive=True)
beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7 | Resemblance to speakers prosody - lower = more similar - higher = based on sentence", interactive=True)
speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.1, label="Speed of speech", info="Defaults to 1", interactive=True)
with gr.Column(scale=1):
clbtn = gr.Button("Synthesize", variant="primary")
claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#FF593E'})
clbtn.click(generate, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio], concurrency_limit=4)
if __name__ == "__main__":
# demo.queue(api_open=False, max_size=15).launch(show_api=False)
clone.queue(api_open=False, max_size=15).launch(show_api=False)