File size: 47,891 Bytes
63d903a
 
 
0b607fb
be913ab
63d903a
9b9a599
2594602
63d903a
 
c1bd83b
 
63d903a
 
 
b4dffd4
 
a6abb8f
c89450b
5676761
 
d03b227
a6abb8f
a7533b2
 
 
a6abb8f
 
2594602
781b94b
28ed44f
63d903a
a6abb8f
 
 
 
 
 
63d903a
a7533b2
b4dffd4
 
 
149b538
9b9a599
63bd648
dae04df
38817b8
0b91a62
d03b227
9b9a599
 
 
 
b4dffd4
 
63d903a
 
 
 
 
 
 
 
 
5676761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4dffd4
63d903a
 
 
 
 
 
 
495c1d2
63d903a
 
 
 
 
 
 
 
 
9b9a599
63d903a
d52f389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
149b538
 
5676761
63d903a
149b538
5676761
 
63d903a
 
5676761
63d903a
 
149b538
 
cca553c
 
 
 
 
5676761
cca553c
 
 
 
 
 
5676761
cca553c
 
5676761
c89450b
 
 
149b538
 
 
 
 
 
 
 
 
 
5676761
149b538
5676761
c89450b
 
 
5676761
c89450b
cca553c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5676761
c89450b
cca553c
c89450b
d52f389
 
 
 
9b9a599
5676761
63d903a
9b9a599
c89450b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9a599
b4dffd4
 
781b94b
b4dffd4
781b94b
b4dffd4
9b9a599
a6abb8f
 
b4dffd4
 
a6abb8f
 
 
 
63d903a
9b9a599
b4dffd4
 
 
 
 
 
9b9a599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
9b9a599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42fe9e9
d03b227
 
 
 
42fe9e9
d03b227
 
 
 
 
2558749
d03b227
 
 
 
42fe9e9
0179d02
 
 
 
 
 
 
 
 
42fe9e9
 
 
d03b227
42fe9e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0a344
 
 
 
 
 
 
42fe9e9
 
 
d03b227
 
 
a3c94f0
d03b227
 
2558749
42fe9e9
2558749
 
a3c94f0
 
d03b227
2558749
d03b227
a3c94f0
 
 
05627b5
e3b0733
05627b5
e3b0733
f3e5661
 
e3b0733
 
 
05627b5
 
e3b0733
05627b5
 
e3b0733
05627b5
e3b0733
05627b5
 
e3b0733
05627b5
e3b0733
 
05627b5
e3b0733
 
bb07ed2
e3b0733
 
 
05627b5
 
e3b0733
 
 
5ed09d4
eef32e4
 
 
 
 
6048ff3
de32af2
6048ff3
de32af2
6048ff3
de32af2
6048ff3
 
 
 
 
 
 
 
 
 
 
0b91a62
6048ff3
 
 
eef32e4
 
 
a1bfede
 
 
 
de32af2
6048ff3
 
 
 
 
 
 
 
 
 
eef32e4
 
 
ed6ccba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6048ff3
a1bfede
 
 
 
6048ff3
 
 
de32af2
6048ff3
de32af2
6048ff3
de32af2
d7a8a93
a1bfede
996270e
6048ff3
de32af2
eef32e4
6048ff3
9547bec
 
 
 
 
 
 
10b6796
9547bec
10b6796
6048ff3
de32af2
6048ff3
 
 
eb21d5d
6048ff3
eb21d5d
9b9a599
 
a6abb8f
 
149b538
9b9a599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149b538
9b9a599
 
 
a6abb8f
9b9a599
 
448313a
dc56661
5676761
 
 
dc56661
5676761
cd540fc
5676761
 
 
 
 
149b538
5676761
05627b5
 
 
 
cd540fc
05627b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd540fc
d03b227
cd540fc
9e81a2f
6048ff3
 
 
d03b227
 
 
05627b5
 
 
cd540fc
d03b227
cd540fc
9e81a2f
d03b227
05627b5
e3b0733
6048ff3
 
 
e3b0733
 
 
05627b5
9b9a599
 
 
 
 
5676761
9b9a599
 
05627b5
9b9a599
204d06f
a6abb8f
 
 
 
 
 
 
 
dc56661
a6abb8f
dc56661
6b3b427
a6abb8f
 
 
9b9a599
a6abb8f
 
 
6b3b427
a6abb8f
 
 
 
 
149b538
 
a6abb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d903a
0c9ba4e
 
 
 
 
 
 
 
 
 
 
149b538
 
 
b4dffd4
 
149b538
b4dffd4
 
149b538
b4dffd4
 
 
c1bd83b
 
 
 
 
149b538
c1bd83b
 
149b538
c1bd83b
149b538
 
 
c1bd83b
 
 
 
 
 
 
 
 
149b538
 
 
c1bd83b
149b538
b4dffd4
a6abb8f
149b538
a6abb8f
 
 
 
149b538
a6abb8f
5db53b7
b0ca421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653adc
218c9a4
a6abb8f
 
 
 
 
149b538
a6abb8f
5db53b7
b5da50d
a6abb8f
 
cbab141
a6abb8f
 
 
 
 
149b538
 
d1372f5
b4dffd4
 
 
63d903a
b4dffd4
 
 
149b538
 
 
 
 
 
 
 
 
b4dffd4
a6c785f
149b538
 
 
 
 
 
c89450b
149b538
 
d7187db
 
 
 
 
a422324
 
d7187db
 
a422324
 
 
 
 
d7187db
b4dffd4
a422324
149b538
9b9a599
149b538
 
781b94b
570f979
 
 
b4dffd4
be22620
b4dffd4
149b538
b4dffd4
 
9b9a599
 
b4dffd4
9b9a599
 
685135d
570f979
b4dffd4
 
 
9b9a599
 
b4dffd4
 
 
9b9a599
149b538
204d06f
 
 
 
978efd2
204d06f
b4dffd4
 
570f979
b4dffd4
a422324
63d903a
5676761
cca553c
63d903a
d52f389
63d903a
 
c89450b
467bf82
149b538
9b9a599
 
 
570f979
9b9a599
d52f389
 
9b9a599
 
 
570f979
9b9a599
c89450b
 
9b9a599
 
570f979
 
9b9a599
570f979
63d903a
 
 
 
 
149b538
 
 
 
 
63d903a
 
0b607fb
2594602
f9f0a5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List, Dict
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from huggingface_hub import InferenceClient
import inspect
import logging
import shutil
import pandas as pd
from docx import Document as DocxDocument
import google.generativeai as genai


from huggingface_hub import InferenceClient

# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"

print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")


MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "@cf/meta/llama-3.1-8b-instruct",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mathstral-7B-v0.1",
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "mattshumer/Reflection-Llama-3.1-70B",
    "gemini-1.5-flash",
    "duckduckgo/gpt-4o-mini",
    "duckduckgo/claude-3-haiku",
    "duckduckgo/llama-3.1-70b",
    "duckduckgo/mixtral-8x7b"
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_office_document(file: NamedTemporaryFile) -> List[Document]:
    file_extension = os.path.splitext(file.name)[1].lower()
    documents = []
    
    if file_extension in ['.xlsx', '.xls']:
        df = pd.read_excel(file.name)
        for _, row in df.iterrows():
            content = ' '.join(str(cell) for cell in row if pd.notna(cell))
            documents.append(Document(page_content=content, metadata={"source": file.name}))
    elif file_extension == '.docx':
        doc = Document(file.name)
        for para in doc.paragraphs:
            if para.text.strip():
                documents.append(Document(page_content=para.text, metadata={"source": file.name}))
    
    return documents

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0")

# Add this at the beginning of your script, after imports
DOCUMENTS_FILE = "uploaded_documents.json"

def load_documents():
    if os.path.exists(DOCUMENTS_FILE):
        with open(DOCUMENTS_FILE, "r") as f:
            return json.load(f)
    return []

def save_documents(documents):
    with open(DOCUMENTS_FILE, "w") as f:
        json.dump(documents, f)

# Replace the global uploaded_documents with this
uploaded_documents = load_documents()

# Modify the update_vectors function
def update_vectors(files, parser):
    global uploaded_documents
    logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")

    if not files:
        logging.warning("No files provided for update_vectors")
        return "Please upload at least one file.", display_documents()

    embed = get_embeddings()
    total_chunks = 0

    all_data = []
    for file in files:
        logging.info(f"Processing file: {file.name}")
        try:
            file_extension = os.path.splitext(file.name)[1].lower()
            
            if file_extension in ['.xlsx', '.xls', '.docx']:
                if parser != "office":
                    logging.warning(f"Using office parser for {file.name} regardless of selected parser")
                data = load_office_document(file)
            elif file_extension == '.pdf':
                if parser == "office":
                    logging.warning(f"Cannot use office parser for PDF file {file.name}. Using llamaparse.")
                    data = load_document(file, "llamaparse")
                else:
                    data = load_document(file, parser)
            else:
                logging.warning(f"Unsupported file type: {file_extension}")
                continue
            
            if not data:
                logging.warning(f"No chunks loaded from {file.name}")
                continue
            logging.info(f"Loaded {len(data)} chunks from {file.name}")
            all_data.extend(data)
            total_chunks += len(data)
            if not any(doc["name"] == file.name for doc in uploaded_documents):
                uploaded_documents.append({"name": file.name, "selected": True})
                logging.info(f"Added new document to uploaded_documents: {file.name}")
            else:
                logging.info(f"Document already exists in uploaded_documents: {file.name}")
        except Exception as e:
            logging.error(f"Error processing file {file.name}: {str(e)}")

    logging.info(f"Total chunks processed: {total_chunks}")

    if not all_data:
        logging.warning("No valid data extracted from uploaded files")
        return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()

    try:
        # Update the appropriate vector store based on file type
        pdf_data = [doc for doc in all_data if doc.metadata["source"].lower().endswith('.pdf')]
        office_data = [doc for doc in all_data if not doc.metadata["source"].lower().endswith('.pdf')]

        if pdf_data:
            if os.path.exists("faiss_database"):
                pdf_database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
                pdf_database.add_documents(pdf_data)
            else:
                pdf_database = FAISS.from_documents(pdf_data, embed)
            pdf_database.save_local("faiss_database")
            logging.info("PDF FAISS database updated and saved")

        if office_data:
            if os.path.exists("office_faiss_database"):
                office_database = FAISS.load_local("office_faiss_database", embed, allow_dangerous_deserialization=True)
                office_database.add_documents(office_data)
            else:
                office_database = FAISS.from_documents(office_data, embed)
            office_database.save_local("office_faiss_database")
            logging.info("Office FAISS database updated and saved")

    except Exception as e:
        logging.error(f"Error updating FAISS database: {str(e)}")
        return f"Error updating vector store: {str(e)}", display_documents()

    # Save the updated list of documents
    save_documents(uploaded_documents)

    # Return a tuple with the status message and the updated document list
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files.", display_documents()


def delete_documents(selected_docs):
    global uploaded_documents
    
    if not selected_docs:
        return "No documents selected for deletion.", display_documents()
    
    embed = get_embeddings()
    database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    
    deleted_docs = []
    docs_to_keep = []
    for doc in database.docstore._dict.values():
        if doc.metadata.get("source") not in selected_docs:
            docs_to_keep.append(doc)
        else:
            deleted_docs.append(doc.metadata.get("source", "Unknown"))
    
    # Print debugging information
    logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
    logging.info(f"Documents to keep: {len(docs_to_keep)}")
    logging.info(f"Documents to delete: {len(deleted_docs)}")
    
    if not docs_to_keep:
        # If all documents are deleted, remove the FAISS database directory
        if os.path.exists("faiss_database"):
            shutil.rmtree("faiss_database")
        logging.info("All documents deleted. Removed FAISS database directory.")
    else:
        # Create new FAISS index with remaining documents
        new_database = FAISS.from_documents(docs_to_keep, embed)
        new_database.save_local("faiss_database")
        logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
    
    # Update uploaded_documents list
    uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
    save_documents(uploaded_documents)
    
    return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()

def chatbot_interface(message, history, model, temperature, num_calls):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        for response in respond(message, history, model, temperature, num_calls):
            history[-1] = (message, response)
            yield history
    except gr.CancelledError:
        yield history
    except Exception as e:
        logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
        history[-1] = (message, f"An unexpected error occurred: {str(e)}")
        yield history

def retry_last_response(history, model, temperature, num_calls):
    if not history:
        return history
    
    last_user_msg = history[-1][0]
    history = history[:-1]  # Remove the last response
    
    return chatbot_interface(last_user_msg, history, model, temperature, num_calls)

def truncate_context(context, max_length=16000):
    """Truncate the context to a maximum length."""
    if len(context) <= max_length:
        return context
    return context[:max_length] + "..."

def get_response_from_duckduckgo(query, model, context, num_calls=1, temperature=0.2):
    logging.info(f"Using DuckDuckGo chat with model: {model}")
    ddg_model = model.split('/')[-1]  # Extract the model name from the full string
    
    # Truncate the context to avoid exceeding input limits
    truncated_context = truncate_context(context)
    
    full_response = ""
    for _ in range(num_calls):
        try:
            # Include truncated context in the query
            contextualized_query = f"Using the following context:\n{truncated_context}\n\nUser question: {query}"
            results = DDGS().chat(contextualized_query, model=ddg_model)
            full_response += results + "\n"
            logging.info(f"DuckDuckGo API response received. Length: {len(results)}")
        except Exception as e:
            logging.error(f"Error in generating response from DuckDuckGo: {str(e)}")
            yield f"An error occurred with the {model} model: {str(e)}. Please try again."
            return

    yield full_response.strip()

class ConversationManager:
    def __init__(self):
        self.history = []
        self.current_context = None

    def add_interaction(self, query, response):
        self.history.append((query, response))
        self.current_context = f"Previous query: {query}\nPrevious response summary: {response[:200]}..."

    def get_context(self):
        return self.current_context

conversation_manager = ConversationManager()

def get_web_search_results(query: str, max_results: int = 10) -> List[Dict[str, str]]:
    try:
        results = list(DDGS().text(query, max_results=max_results))
        if not results:
            print(f"No results found for query: {query}")
        return results
    except Exception as e:
        print(f"An error occurred during web search: {str(e)}")
        return [{"error": f"An error occurred during web search: {str(e)}"}]

def rephrase_query(original_query: str, conversation_manager: ConversationManager) -> str:
    context = conversation_manager.get_context()
    if context:
        prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:

        1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
        2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
        3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
        4. Provide ONLY the rephrased query without any additional explanation or reasoning.
        
        Context: {context}
        
        New query: {original_query}
        
        Rephrased query:"""
        response = DDGS().chat(prompt, model="llama-3.1-70b")
        rephrased_query = response.split('\n')[0].strip()
        return rephrased_query
    return original_query

def summarize_web_results(query: str, search_results: List[Dict[str, str]], conversation_manager: ConversationManager) -> str:
    try:
        context = conversation_manager.get_context()
        search_context = "\n\n".join([f"Title: {result['title']}\nContent: {result['body']}" for result in search_results])

        prompt = f"""You are a highly intelligent & expert analyst and your job is to skillfully articulate the web search results about '{query}' and considering the context: {context}, 
        You have to create a comprehensive news summary FOCUSING on the context provided to you. 
        Include key facts, relevant statistics, and expert opinions if available. 
        Ensure the article is well-structured with an introduction, main body, and conclusion, IF NECESSARY. 
        Address the query in the context of the ongoing conversation IF APPLICABLE.
        Cite sources directly within the generated text and not at the end of the generated text, integrating URLs where appropriate to support the information provided:

        {search_context}

        Article:"""

        summary = DDGS().chat(prompt, model="llama-3.1-70b")
        return summary
    except Exception as e:
        return f"An error occurred during summarization: {str(e)}"

def get_response_from_gemini(query, model, selected_docs, file_type, num_calls=1, temperature=0.2):
    # Configure the Gemini API
    genai.configure(api_key=os.environ["GEMINI_API_KEY"])

    # Define the model
    gemini_model = genai.GenerativeModel(
        model_name="gemini-1.5-flash",
        generation_config={
            "temperature": temperature,
            "top_p": 1,
            "top_k": 1,
            "max_output_tokens": 20000,
        },
    )

    if file_type == "excel":
        # Excel functionality remains the same

        system_instruction = """You are a highly specialized Python programmer with deep expertise in data analysis and visualization using Excel spreadsheets. 
        Your primary goal is to generate accurate and efficient Python code to perform calculations or create visualizations based on the user's requests. 
        Strictly use the data provided to write code that identifies key metrics, trends, and significant details relevant to the query. 
        Do not make assumptions or include any information that is not explicitly supported by the dataset. 
        If the user requests a calculation, provide the appropriate Python code to execute it, and if a visualization is needed, generate code using the matplotlib library to create the chart.
        Based on the following data extracted from Excel spreadsheets:\n{context}\n\nPlease provide the Python code needed to execute the following task: '{query}'. 
        Ensure that the code is derived directly from the dataset. 
        If a chart is requested, use the matplotlib library to generate the appropriate visualization."""
        
        full_prompt = f"{system_instruction}\n\nContext:\n{selected_docs}\n\nUser query: {query}"
        
    elif file_type == "pdf":
        # PDF functionality similar to get_response_from_pdf
        embed = get_embeddings()
        if os.path.exists("faiss_database"):
            database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        else:
            yield "No documents available. Please upload PDF documents to answer questions."
            return

        # Pre-filter the documents
        filtered_docs = [doc for doc_id, doc in database.docstore._dict.items() 
                         if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs]

        if not filtered_docs:
            yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
            return

        # Create a new FAISS index with only the selected documents
        filtered_db = FAISS.from_documents(filtered_docs, embed)
        
        retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
        relevant_docs = retriever.get_relevant_documents(query)

        context_str = "\n".join([doc.page_content for doc in relevant_docs])
    
        system_instruction = """You are a highly specialized financial analyst assistant with expertise in analyzing and summarizing financial documents. 
        Your goal is to provide accurate, detailed, and precise summaries based on the context provided. 
        Avoid making assumptions or adding information that is not explicitly supported by the context from the PDF documents.      
        Using the following context from the PDF documents:\n{context_str}\n\nPlease generate a step-by-step reasoning before arriving at a comprehensive and accurate summary addressing the following question: '{query}'. 
        Ensure your response is strictly based on the provided context, highlighting key financial metrics, trends, and significant details relevant to the query. 
        Avoid any speculative or unverified information."""

        full_prompt = f"{system_instruction}\n\nContext:\n{context_str}\n\nUser query: {query}\n\nPlease generate a step-by-step reasoning before arriving at a comprehensive and accurate summary addressing the question. Ensure your response is strictly based on the provided context, highlighting key metrics, trends, and significant details relevant to the query. Avoid any speculative or unverified information."

    else:
        raise ValueError("Invalid file type. Use 'excel' or 'pdf'.")

    full_response = ""
    for _ in range(num_calls):
        try:
            # Generate content with streaming enabled
            response = gemini_model.generate_content(full_prompt, stream=True)
            for chunk in response:
                if chunk.text:
                    full_response += chunk.text
                    yield full_response  # Yield the accumulated response so far
        except Exception as e:
            yield f"An error occurred with the Gemini model: {str(e)}. Please try again."

    if not full_response:
        yield "No response generated from the Gemini model."

def get_response_from_excel(query, model, context, num_calls=3, temperature=0.2):
    logging.info(f"Getting response from Excel using model: {model}")
    
    messages = [
    {"role": "system", "content": "You are a highly specialized Python programmer with deep expertise in data analysis and visualization using Excel spreadsheets. Your primary goal is to generate accurate and efficient Python code to perform calculations or create visualizations based on the user's requests. Strictly use the data provided to write code that identifies key metrics, trends, and significant details relevant to the query. Do not make assumptions or include any information that is not explicitly supported by the dataset. If the user requests a calculation, provide the appropriate Python code to execute it, and if a visualization is needed, generate code using the matplotlib library to create the chart."},
    {"role": "user", "content": f"Based on the following data extracted from Excel spreadsheets:\n{context}\n\nPlease provide the Python code needed to execute the following task: '{query}'. Ensure that the code is derived directly from the dataset. If a chart is requested, use the matplotlib library to generate the appropriate visualization."}
    ]

    if model.startswith("duckduckgo/"):
        # Use DuckDuckGo chat with context
        return get_response_from_duckduckgo(query, model, context, num_calls, temperature)
    elif model == "@cf/meta/llama-3.1-8b-instruct":
        # Use Cloudflare API
        return get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="excel")
    else:
        # Use Hugging Face API
        client = InferenceClient(model, token=huggingface_token)

        response = ""
        for i in range(num_calls):
            logging.info(f"API call {i+1}/{num_calls}")
            for message in client.chat_completion(
                messages=messages,
                max_tokens=20000,
                temperature=temperature,
                stream=True,
                top_p=0.2,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    response += chunk
                    yield response  # Yield partial response

        logging.info("Finished generating response for Excel data")

def truncate_context(context, max_chars=10000):
    """Truncate context to a maximum number of characters."""
    if len(context) <= max_chars:
        return context
    return context[:max_chars] + "..."

def get_response_from_llama(query, model, selected_docs, file_type, num_calls=1, temperature=0.2):
    logging.info(f"Getting response from Llama using model: {model}")
    
    # Initialize the Hugging Face client
    client = InferenceClient(model, token=huggingface_token)
    
    if file_type == "excel":
        # Excel functionality
        system_instruction = """You are a highly specialized Python programmer with deep expertise in data analysis and visualization using Excel spreadsheets. 
        Your primary goal is to generate accurate and efficient Python code to perform calculations or create visualizations based on the user's requests. 
        Strictly use the data provided to write code that identifies key metrics, trends, and significant details relevant to the query. 
        Do not make assumptions or include any information that is not explicitly supported by the dataset. 
        If the user requests a calculation, provide the appropriate Python code to execute it, and if a visualization is needed, generate code using the matplotlib library to create the chart."""
        
        # Get the context from selected Excel documents
        embed = get_embeddings()
        office_database = FAISS.load_local("office_faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = office_database.as_retriever(search_kwargs={"k": 20})
        relevant_docs = retriever.get_relevant_documents(query)
        context = "\n".join([doc.page_content for doc in relevant_docs if doc.metadata["source"] in selected_docs])
        
        # Truncate context
        context = truncate_context(context)
        
        messages = [
            {"role": "system", "content": system_instruction},
            {"role": "user", "content": f"Based on the following data extracted from Excel spreadsheets:\n{context}\n\nPlease provide the Python code needed to execute the following task: '{query}'. Ensure that the code is derived directly from the dataset. If a chart is requested, use the matplotlib library to generate the appropriate visualization."}
        ]
        
    elif file_type == "pdf":
        # PDF functionality
        embed = get_embeddings()
        pdf_database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        
        retriever = pdf_database.as_retriever(search_kwargs={"k": 10})
        relevant_docs = retriever.get_relevant_documents(query)
        
        context_str = "\n".join([doc.page_content for doc in relevant_docs if doc.metadata["source"] in selected_docs])
    
        # Truncate context
        context_str = truncate_context(context_str)
    
        system_instruction = """You are an AI assistant designed to provide detailed, step-by-step responses. Your outputs should follow this structure:

        1. Begin with a <thinking> section. Everything in this section is invisible to the user.
        2. Inside the thinking section:
            a. Briefly analyze the question and outline your approach.
            b. Present a clear plan of steps to solve the problem.
            c. Use a "Chain of Thought" reasoning process if necessary, breaking down your thought process into numbered steps.
        3. Include a <reflection> section for each idea where you:
            a. Review your reasoning.
            b. Check for potential errors or oversights.
            c. Confirm or adjust your conclusion if necessary.
        4. Be sure to close all reflection sections.
        5. Close the thinking section with </thinking>.
        6. Provide your final answer in an <output> section.
  
        Always use these tags in your responses. Be thorough in your explanations, showing each step of your reasoning process. Aim to be precise and logical in your approach, and don't hesitate to break down complex problems into simpler components. Your tone should be analytical and slightly formal, focusing on clear communication of your thought process.
  
        Remember: Both <thinking> and <reflection> MUST be tags and must be closed at their conclusion
  
        Make sure all <tags> are on separate lines with no other text. Do not include other text on a line containing a tag."""

        messages = [
            {"role": "system", "content": system_instruction},
            {"role": "user", "content": f"Using the following context from the PDF documents:\n{context_str}\n\nPlease generate a step-by-step reasoning before arriving at a comprehensive and accurate summary addressing the following question: '{query}'. Ensure your response is strictly based on the provided context, highlighting key metrics, trends, and significant details relevant to the query. Avoid any speculative or unverified information."}
        ]

    else:
        raise ValueError("Invalid file type. Use 'excel' or 'pdf'.")

    full_response = ""
    for _ in range(num_calls):
        try:
            # Generate content with streaming enabled
            for response in client.chat_completion(
                messages=messages,  # Pass messages in the required format
                max_tokens=3000,  # Reduced to ensure we stay within token limits
                temperature=temperature,
                stream=True,
                top_p=0.9,
            ):
                # Check the structure of the response object
                if isinstance(response, dict) and "choices" in response:
                    for choice in response["choices"]:
                        if "delta" in choice and "content" in choice["delta"]:
                            chunk = choice["delta"]["content"]
                            full_response += chunk
                            yield full_response  # Yield the accumulated response so far
                else:
                    logging.error("Unexpected response format or missing attributes in the response object.")
                    break
        except Exception as e:
            logging.error(f"Error during API call: {str(e)}")
            yield f"An error occurred with the Llama model: {str(e)}. Please try again."

    if not full_response:
        logging.warning("No response generated from the Llama model")
        yield "No response generated from the Llama model."
    
# Modify the existing respond function to handle both PDF and web search
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Selected Documents: {selected_docs}")
    logging.info(f"Use Web Search: {use_web_search}")

    if use_web_search:
        original_query = message
        rephrased_query = rephrase_query(message, conversation_manager)
        logging.info(f"Original query: {original_query}")
        logging.info(f"Rephrased query: {rephrased_query}")

        final_summary = ""
        for _ in range(num_calls):
            search_results = get_web_search_results(rephrased_query)
            if not search_results:
                final_summary += f"No search results found for the query: {rephrased_query}\n\n"
            elif "error" in search_results[0]:
                final_summary += search_results[0]["error"] + "\n\n"
            else:
                summary = summarize_web_results(rephrased_query, search_results, conversation_manager)
                final_summary += summary + "\n\n"

        if final_summary:
            conversation_manager.add_interaction(original_query, final_summary)
            yield final_summary
        else:
            yield "Unable to generate a response. Please try a different query."
    else:
        try:
            embed = get_embeddings()
            pdf_database = None
            office_database = None

            if os.path.exists("faiss_database"):
                pdf_database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)

            if os.path.exists("office_faiss_database"):
                office_database = FAISS.load_local("office_faiss_database", embed, allow_dangerous_deserialization=True)

            if not pdf_database and not office_database:
                yield "No documents available. Please upload documents to answer questions."
                return

            all_relevant_docs = []
            if pdf_database:
                pdf_retriever = pdf_database.as_retriever(search_kwargs={"k": 10})
                all_relevant_docs.extend(pdf_retriever.get_relevant_documents(message))

            if office_database:
                office_retriever = office_database.as_retriever(search_kwargs={"k": 10})
                all_relevant_docs.extend(office_retriever.get_relevant_documents(message))

            relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]

            if not relevant_docs:
                yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
                return

            # Separate Excel documents from others
            excel_docs = [doc for doc in relevant_docs if doc.metadata["source"].lower().endswith(('.xlsx', '.xls'))]
            other_docs = [doc for doc in relevant_docs if not doc.metadata["source"].lower().endswith(('.xlsx', '.xls'))]

            excel_context = "\n".join([doc.page_content for doc in excel_docs])
            other_context = "\n".join([doc.page_content for doc in other_docs])

            logging.info(f"Excel context length: {len(excel_context)}")
            logging.info(f"Other context length: {len(other_context)}")

            # Process Excel documents
            if excel_docs:
                file_type = "excel"
                if model == "gemini-1.5-flash":
                    for chunk in get_response_from_gemini(message, model, selected_docs, file_type, num_calls, temperature):
                        yield chunk
                elif "llama" in model.lower():
                    for chunk in get_response_from_llama(message, model, selected_docs, file_type, num_calls, temperature):
                        yield chunk
                else:
                    for response in get_response_from_excel(message, model, excel_context, num_calls, temperature):
                        yield response

            # Process other documents (PDF, Word)
            if other_docs:
                file_type = "pdf"
                if model == "gemini-1.5-flash":
                    for chunk in get_response_from_gemini(message, model, selected_docs, file_type, num_calls, temperature):
                        yield chunk
                elif model == "@cf/meta/llama-3.1-8b-instruct":
                    for response in get_response_from_cloudflare(prompt="", context=other_context, query=message, num_calls=num_calls, temperature=temperature, search_type="document"):
                        yield response
                elif "llama" in model.lower():
                    for chunk in get_response_from_llama(message, model, selected_docs, file_type, num_calls, temperature):
                        yield chunk
                else:
                    for response in get_response_from_pdf(message, model, selected_docs, num_calls, temperature):
                        yield response

        except Exception as e:
            logging.error(f"Error with {model}: {str(e)}")
            if "microsoft/Phi-3-mini-4k-instruct" in model:
                logging.info("Falling back to Mistral model due to Phi-3 error")
                fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
                yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
            else:
                yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
        
logging.basicConfig(level=logging.DEBUG)

def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
    headers = {
        "Authorization": f"Bearer {API_TOKEN}",
        "Content-Type": "application/json"
    }
    model = "@cf/meta/llama-3.1-8b-instruct"

    if search_type == "pdf":
        instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
    else:  # web search
        instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    inputs = [
        {"role": "system", "content": instruction},
        {"role": "user", "content": query}
    ]

    payload = {
        "messages": inputs,
        "stream": True,
        "temperature": temperature,
        "max_tokens": 32000
    }

    full_response = ""
    for i in range(num_calls):
        try:
            with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
                if response.status_code == 200:
                    for line in response.iter_lines():
                        if line:
                            try:
                                json_response = json.loads(line.decode('utf-8').split('data: ')[1])
                                if 'response' in json_response:
                                    chunk = json_response['response']
                                    full_response += chunk
                                    yield full_response
                            except (json.JSONDecodeError, IndexError) as e:
                                logging.error(f"Error parsing streaming response: {str(e)}")
                                continue
                else:
                    logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
                    yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
        except Exception as e:
            logging.error(f"Error in generating response from Cloudflare: {str(e)}")
            yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
    
    if not full_response:
        yield "I apologize, but I couldn't generate a response at this time. Please try again later."

def create_web_search_vectors(search_results):
    embed = get_embeddings()
    
    documents = []
    for result in search_results:
        if 'body' in result:
            content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
            documents.append(Document(page_content=content, metadata={"source": result['href']}))
    
    return FAISS.from_documents(documents, embed)

def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
    logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
    
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        logging.info("Loading FAISS database")
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        logging.warning("No FAISS database found")
        yield "No documents available. Please upload PDF documents to answer questions."
        return

    # Pre-filter the documents
    filtered_docs = []
    for doc_id, doc in database.docstore._dict.items():
        if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
            filtered_docs.append(doc)
    
    logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")

    if not filtered_docs:
        logging.warning(f"No documents found for the selected sources: {selected_docs}")
        yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
        return

    # Create a new FAISS index with only the selected documents
    filtered_db = FAISS.from_documents(filtered_docs, embed)
    
    retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
    logging.info(f"Retrieving relevant documents for query: {query}")
    relevant_docs = retriever.get_relevant_documents(query)
    logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")

    for doc in relevant_docs:
        logging.info(f"Document source: {doc.metadata['source']}")
        logging.info(f"Document content preview: {doc.page_content[:100]}...")  # Log first 100 characters of each document

    context_str = "\n".join([doc.page_content for doc in relevant_docs])
    logging.info(f"Total context length: {len(context_str)}")

    if model == "@cf/meta/llama-3.1-8b-instruct":
        logging.info("Using Cloudflare API")
        # Use Cloudflare API with the retrieved context
        for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
            yield response
    else:
        logging.info("Using Hugging Face API")
        # Use Hugging Face API
        messages = [
            {"role": "system", "content": """You are an AI assistant designed to provide detailed, step-by-step responses. Your outputs should follow this structure:

        1. Begin with a <thinking> section. Everything in this section is invisible to the user.
        2. Inside the thinking section:
            a. Briefly analyze the question and outline your approach.
            b. Present a clear plan of steps to solve the problem.
            c. Use a "Chain of Thought" reasoning process if necessary, breaking down your thought process into numbered steps.
        3. Include a <reflection> section for each idea where you:
            a. Review your reasoning.
            b. Check for potential errors or oversights.
            c. Confirm or adjust your conclusion if necessary.
        4. Be sure to close all reflection sections.
        5. Close the thinking section with </thinking>.
        6. Provide your final answer in an <output> section.
  
        Always use these tags in your responses. Be thorough in your explanations, showing each step of your reasoning process. Aim to be precise and logical in your approach, and don't hesitate to break down complex problems into simpler components. Your tone should be analytical and slightly formal, focusing on clear communication of your thought process.
  
        Remember: Both <thinking> and <reflection> MUST be tags and must be closed at their conclusion
  
        Make sure all <tags> are on separate lines with no other text. Do not include other text on a line containing a tag."""},

            {"role": "user", "content": f"Using the following context from the PDF documents:\n{context_str}\n\nPlease generate a step-by-step reasoning before arriving at a comprehensive and accurate summary addressing the following question: '{query}'. Ensure your response is strictly based on the provided context, highlighting key financial metrics, trends, and significant details relevant to the query. Avoid any speculative or unverified information."}
        ]
        
        client = InferenceClient(model, token=huggingface_token)
        
        response = ""
        for i in range(num_calls):
            logging.info(f"API call {i+1}/{num_calls}")
            for message in client.chat_completion(
                messages=messages,
                max_tokens=20000,
                temperature=temperature,
                stream=True,
                top_p=0.8,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    response += chunk
                    yield response  # Yield partial response
        
        logging.info("Finished generating response")

def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Fine-tune chatbox size */
.chatbot-container {
    height: 600px !important;
    width: 100% !important;
}
.chatbot-container > div {
    height: 100%;
    width: 100%;
}
"""

uploaded_documents = []

def display_documents():
    return gr.CheckboxGroup(
        choices=[doc["name"] for doc in uploaded_documents],
        value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
        label="Select documents to query or delete"
    )

def initial_conversation():
    return [
        (None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
                "1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
                "2. Use web search to find information\n"
                "3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
                "4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
                "To get started, upload some PDFs or ask me a question!")
    ]
# Add this new function
def refresh_documents():
    global uploaded_documents
    uploaded_documents = load_documents()
    return display_documents()

# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")

use_web_search = gr.Checkbox(label="Use Web Search", value=False)

custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"

# Update the demo interface
# Update the Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
    additional_inputs=[
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        gr.Checkbox(label="Use Web Search", value=True),
        gr.CheckboxGroup(label="Select documents to query")        
    ],
    title="AI-powered PDF Chat and Web Search Assistant",
    description="Chat with your PDFs or use web search to answer questions.",
    theme=gr.Theme.from_hub("allenai/gradio-theme"),
    css=css,
    examples=[
        ["Tell me about the contents of the uploaded PDFs."],
        ["What are the main topics discussed in the documents?"],
        ["Can you summarize the key points from the PDFs?"],
        ["What's the latest news about artificial intelligence?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
    textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDFs or any topic", container=False, scale=7),
    chatbot = gr.Chatbot(  
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        height=400,
        value=initial_conversation()
    )
)

# Add file upload functionality
with demo:
    gr.Markdown("## Upload and Manage PDF Documents")
    with gr.Row():
        file_input = gr.Files(label="Upload your documents", file_types=[".pdf", ".docx", ".xlsx", ".xls"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse", "office"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
        refresh_button = gr.Button("Refresh Document List")
    
    update_output = gr.Textbox(label="Update Status")
    delete_button = gr.Button("Delete Selected Documents")

    # Update both the output text and the document selector
    update_button.click(
        update_vectors, 
        inputs=[file_input, parser_dropdown], 
        outputs=[update_output, demo.additional_inputs[-1]]  # Use the CheckboxGroup from additional_inputs
    )
    
    # Add the refresh button functionality
    refresh_button.click(
        refresh_documents, 
        inputs=[], 
        outputs=[demo.additional_inputs[-1]]  # Use the CheckboxGroup from additional_inputs
    )
    
    # Add the delete button functionality
    delete_button.click(
        delete_documents,
        inputs=[demo.additional_inputs[-1]],  # Use the CheckboxGroup from additional_inputs
        outputs=[update_output, demo.additional_inputs[-1]]
    )

    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Select the documents you want to query using the checkboxes.
    4. Ask questions in the chat interface. 
    5. Toggle "Use Web Search" to switch between PDF chat and web search.
    6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
    7. Use the provided examples or ask your own questions.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)