Shreyas094's picture
Update app.py
59ce7af verified
raw
history blame
33.9 kB
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_core.vectorstores import VectorStore
from langchain_core.documents import Document
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging
import shutil
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"@cf/meta/llama-3.1-8b-instruct",
"mistralai/Mistral-Nemo-Instruct-2407"
]
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
# Add this at the beginning of your script, after imports
DOCUMENTS_FILE = "uploaded_documents.json"
def load_documents():
if os.path.exists(DOCUMENTS_FILE):
with open(DOCUMENTS_FILE, "r") as f:
return json.load(f)
return []
def save_documents(documents):
with open(DOCUMENTS_FILE, "w") as f:
json.dump(documents, f)
# Replace the global uploaded_documents with this
uploaded_documents = load_documents()
# Modify the update_vectors function
def update_vectors(files, parser):
global uploaded_documents
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
if not files:
logging.warning("No files provided for update_vectors")
return "Please upload at least one PDF file.", display_documents()
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
logging.info(f"Processing file: {file.name}")
try:
data = load_document(file, parser)
if not data:
logging.warning(f"No chunks loaded from {file.name}")
continue
logging.info(f"Loaded {len(data)} chunks from {file.name}")
all_data.extend(data)
total_chunks += len(data)
if not any(doc["name"] == file.name for doc in uploaded_documents):
uploaded_documents.append({"name": file.name, "selected": True})
logging.info(f"Added new document to uploaded_documents: {file.name}")
else:
logging.info(f"Document already exists in uploaded_documents: {file.name}")
except Exception as e:
logging.error(f"Error processing file {file.name}: {str(e)}")
logging.info(f"Total chunks processed: {total_chunks}")
if not all_data:
logging.warning("No valid data extracted from uploaded files")
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
try:
if os.path.exists("faiss_database"):
logging.info("Updating existing FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
logging.info("Creating new FAISS database")
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
logging.info("FAISS database saved")
except Exception as e:
logging.error(f"Error updating FAISS database: {str(e)}")
return f"Error updating vector store: {str(e)}", display_documents()
# Save the updated list of documents
save_documents(uploaded_documents)
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
def delete_documents(selected_docs):
global uploaded_documents
if not selected_docs:
return "No documents selected for deletion.", display_documents()
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
deleted_docs = []
docs_to_keep = []
for doc in database.docstore._dict.values():
if doc.metadata.get("source") not in selected_docs:
docs_to_keep.append(doc)
else:
deleted_docs.append(doc.metadata.get("source", "Unknown"))
# Print debugging information
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
logging.info(f"Documents to keep: {len(docs_to_keep)}")
logging.info(f"Documents to delete: {len(deleted_docs)}")
if not docs_to_keep:
# If all documents are deleted, remove the FAISS database directory
if os.path.exists("faiss_database"):
shutil.rmtree("faiss_database")
logging.info("All documents deleted. Removed FAISS database directory.")
else:
# Create new FAISS index with remaining documents
new_database = FAISS.from_documents(docs_to_keep, embed)
new_database.save_local("faiss_database")
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
# Update uploaded_documents list
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
save_documents(uploaded_documents)
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
print(f"Starting generate_chunked_response with {num_calls} calls")
full_response = ""
messages = [{"role": "user", "content": prompt}]
if model == "@cf/meta/llama-3.1-8b-instruct":
# Cloudflare API
for i in range(num_calls):
print(f"Starting Cloudflare API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
response = requests.post(
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
headers={"Authorization": f"Bearer {API_TOKEN}"},
json={
"stream": true,
"messages": [
{"role": "system", "content": "You are a friendly assistant"},
{"role": "user", "content": prompt}
],
"max_tokens": max_tokens,
"temperature": temperature
},
stream=true
)
for line in response.iter_lines():
if should_stop:
print("Stop clicked during streaming, breaking")
break
if line:
try:
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
chunk = json_data['response']
full_response += chunk
except json.JSONDecodeError:
continue
print(f"Cloudflare API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Cloudflare: {str(e)}")
else:
# Original Hugging Face API logic
client = InferenceClient(model, token=huggingface_token)
for i in range(num_calls):
print(f"Starting Hugging Face API call {i+1}")
if should_stop:
print("Stop clicked, breaking loop")
break
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=True,
):
if should_stop:
print("Stop clicked during streaming, breaking")
break
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
full_response += chunk
print(f"Hugging Face API call {i+1} completed")
except Exception as e:
print(f"Error in generating response from Hugging Face: {str(e)}")
# Clean up the response
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
clean_response = clean_response.replace("Using the following context:", "").strip()
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
# Remove duplicate paragraphs and sentences
paragraphs = clean_response.split('\n\n')
unique_paragraphs = []
for paragraph in paragraphs:
if paragraph not in unique_paragraphs:
sentences = paragraph.split('. ')
unique_sentences = []
for sentence in sentences:
if sentence not in unique_sentences:
unique_sentences.append(sentence)
unique_paragraphs.append('. '.join(unique_sentences))
final_response = '\n\n'.join(unique_paragraphs)
print(f"Final clean response: {final_response[:100]}...")
return final_response
class SimpleDDGSearch:
def search(self, query: str, num_results: int = 3):
results = DDGS().text(query, region='wt-wt', safesearch='off', max_results=num_results)
return [res["href"] for res in results]
class TrafilaturaWebCrawler:
def get_website_content_from_url(self, url: str) -> str:
try:
downloaded = fetch_url(url)
if downloaded is None:
return f"Failed to fetch content from URL: {url}"
result = extract(downloaded, output_format='json', include_comments=False, with_metadata=True, url=url)
if result:
result_dict = json.loads(result)
title = result_dict.get('title', 'No title found')
content = result_dict.get('text', 'No content extracted')
if content == 'No content extracted':
content = extract(downloaded, include_comments=False)
return f'=========== Website Title: {title} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{content}\n\n=========== Website Content End ===========\n\n'
else:
return f"No content extracted from URL: {url}"
except Exception as e:
return f"An error occurred while processing {url}: {str(e)}"
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls, use_web_search):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, use_web_search, model, temperature, num_calls):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
logging.info(f"Selected Documents: {selected_docs}")
logging.info(f"Instruction Key: {instruction_key}")
try:
if instruction_key and instruction_key != "None":
# This is a summary generation request
instruction = INSTRUCTION_PROMPTS[instruction_key]
context_str = get_context_for_summary(selected_docs)
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
use_web_search = False # Ensure we use PDF search for summaries
if use_web_search:
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
first_line = response.split('\n')[0] if response else ''
# logging.info(f"Generated Response (first line): {first_line}")
yield response
else:
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
# Filter relevant documents based on user selection
all_relevant_docs = retriever.get_relevant_documents(message)
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
if not relevant_docs:
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
context_str = "\n".join([doc.page_content for doc in relevant_docs])
else:
context_str = "No documents available."
yield "No documents available. Please upload PDF documents to answer questions."
return
if model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
first_line = partial_response.split('\n')[0] if partial_response else ''
# logging.info(f"Generated Response (first line): {first_line}")
yield partial_response
else:
# Use Hugging Face API
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
first_line = partial_response.split('\n')[0] if partial_response else ''
# logging.info(f"Generated Response (first line): {first_line}")
yield partial_response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
if "microsoft/Phi-3-mini-4k-instruct" in model:
logging.info("Falling back to Mistral model due to Phi-3 error")
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key)
else:
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
logging.basicConfig(level=logging.DEBUG)
def get_context_for_summary(selected_docs):
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks
# Create a generic query that covers common financial summary topics
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
relevant_docs = retriever.get_relevant_documents(generic_query)
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
if not filtered_docs:
return "No relevant information found in the selected documents for summary generation."
context_str = "\n".join([doc.page_content for doc in filtered_docs])
return context_str
else:
return "No documents available for summary generation."
def get_context_for_query(query, selected_docs):
embed = get_embeddings()
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks
relevant_docs = retriever.get_relevant_documents(query)
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
if not filtered_docs:
return "No relevant information found in the selected documents for the given query."
context_str = "\n".join([doc.page_content for doc in filtered_docs])
return context_str
else:
return "No documents available to answer the query."
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
model = "@cf/meta/llama-3.1-8b-instruct"
if search_type == "pdf":
instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
else: # web search
instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
Also the generated research document should include the source URL as a hyperlink within the text. Ensure that the hyperlink is embedded in a relevant phrase or word within the response.
Format the hyperlink in Markdown (e.g., [relevant text](URL))."""
inputs = [
{"role": "system", "content": instruction},
{"role": "user", "content": query}
]
payload = {
"messages": inputs,
"stream": True,
"temperature": temperature,
"max_tokens": 32000
}
full_response = ""
for i in range(num_calls):
try:
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
if response.status_code == 200:
for line in response.iter_lines():
if line:
try:
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
if 'response' in json_response:
chunk = json_response['response']
full_response += chunk
yield full_response
except (json.JSONDecodeError, IndexError) as e:
logging.error(f"Error parsing streaming response: {str(e)}")
continue
else:
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
except Exception as e:
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
if not full_response:
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
searcher = SimpleDDGSearch()
search_results = searcher.search(query, num_results=3)
crawler = TrafilaturaWebCrawler()
context = ""
for url in search_results:
context += crawler.get_website_content_from_url(url) + "\n"
prompt = f"""You are an expert AI named Sentinel and have been given a task to create a detailed and complete research article using the following context from web search results:
{context} that fulfills the following user request: '{query}'
Cover all the key points discussed in the {context} provided to you. Also stick with the context provided to you do not report any misleading or out of context information.
Also the research document should include the source URL as a hyperlink within the text. Ensure that the hyperlink is embedded in a relevant phrase or word within the response.
Format the hyperlink in Markdown (e.g., [relevant text](URL))."""
if model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
yield response, "" # Yield streaming response without sources
else:
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
main_content = ""
for i in range(num_calls):
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
INSTRUCTION_PROMPTS = {
"Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
"Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
"Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
# Add more instruction prompts as needed
}
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
embed = get_embeddings()
if os.path.exists("faiss_database"):
logging.info("Loading FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
logging.warning("No FAISS database found")
yield "No documents available. Please upload PDF documents to answer questions."
return
# Pre-filter the documents
filtered_docs = []
for doc_id, doc in database.docstore._dict.items():
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
filtered_docs.append(doc)
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")
if not filtered_docs:
logging.warning(f"No documents found for the selected sources: {selected_docs}")
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
# Create a new FAISS index with only the selected documents
filtered_db = FAISS.from_documents(filtered_docs, embed)
retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
logging.info(f"Retrieving relevant documents for query: {query}")
relevant_docs = retriever.get_relevant_documents(query)
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
for doc in relevant_docs:
logging.info(f"Document source: {doc.metadata['source']}")
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
context_str = "\n".join([doc.page_content for doc in relevant_docs])
logging.info(f"Total context length: {len(context_str)}")
if model == "@cf/meta/llama-3.1-8b-instruct":
logging.info("Using Cloudflare API")
# Use Cloudflare API with the retrieved context
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
yield response
else:
logging.info("Using Hugging Face API")
# Use Hugging Face API
prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
client = InferenceClient(model, token=huggingface_token)
response = ""
for i in range(num_calls):
logging.info(f"API call {i+1}/{num_calls}")
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=10000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
response += chunk
yield response # Yield partial response
logging.info("Finished generating response")
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
uploaded_documents = []
def display_documents():
return gr.CheckboxGroup(
choices=[doc["name"] for doc in uploaded_documents],
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
label="Select documents to query or delete"
)
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n"
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n"
"2. Use web search to find information\n"
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n"
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n"
"To get started, upload some PDFs or ask me a question!")
]
# Add this new function
def refresh_documents():
global uploaded_documents
uploaded_documents = load_documents()
return display_documents()
# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys())
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
use_web_search,
document_selector,
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None")
],
title="AI-powered Web Search and PDF Chat Assistant",
description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["Tell me about the contents of the uploaded PDFs."],
["What are the main topics discussed in the documents?"],
["Can you summarize the key points from the PDFs?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
# Add file upload functionality
with demo:
gr.Markdown("## Upload and Manage PDF Documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
update_button = gr.Button("Upload Document")
refresh_button = gr.Button("Refresh Document List")
update_output = gr.Textbox(label="Update Status")
delete_button = gr.Button("Delete Selected Documents")
# Update both the output text and the document selector
update_button.click(update_vectors,
inputs=[file_input, parser_dropdown],
outputs=[update_output, document_selector])
# Add the refresh button functionality
refresh_button.click(refresh_documents,
inputs=[],
outputs=[document_selector])
# Add the delete button functionality
delete_button.click(delete_documents,
inputs=[document_selector],
outputs=[update_output, document_selector])
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Select the documents you want to query using the checkboxes.
4. Ask questions in the chat interface.
5. Toggle "Use Web Search" to switch between PDF chat and web search.
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
7. Use the provided examples or ask your own questions.
"""
)
if __name__ == "__main__":
demo.launch(share=True)