Shreyas094
commited on
Commit
•
0b607fb
1
Parent(s):
7f4043c
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,50 @@
|
|
1 |
import os
|
2 |
-
import json
|
3 |
-
import re
|
4 |
-
import gradio as gr
|
5 |
-
import pandas as pd
|
6 |
-
import requests
|
7 |
-
import random
|
8 |
-
import urllib.parse
|
9 |
-
from tempfile import NamedTemporaryFile
|
10 |
-
from typing import List, Dict, Optional
|
11 |
-
from bs4 import BeautifulSoup
|
12 |
import logging
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
from langchain_community.document_loaders import PyPDFLoader
|
18 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
19 |
-
from langchain_core.documents import Document
|
20 |
-
from langchain.chains import LLMChain
|
21 |
-
from langchain.prompts import PromptTemplate
|
22 |
|
23 |
-
# Global variables
|
24 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def get_model(temperature, top_p, repetition_penalty):
|
27 |
return HuggingFaceHub(
|
28 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
@@ -35,248 +57,190 @@ def get_model(temperature, top_p, repetition_penalty):
|
|
35 |
huggingfacehub_api_token=huggingface_token
|
36 |
)
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
return
|
41 |
-
|
42 |
-
def update_vectors(files):
|
43 |
-
if not files:
|
44 |
-
return "Please upload at least one PDF file."
|
45 |
-
|
46 |
-
embed = get_embeddings()
|
47 |
-
total_chunks = 0
|
48 |
-
|
49 |
-
all_data = []
|
50 |
-
for file in files:
|
51 |
-
data = load_document(file)
|
52 |
-
all_data.extend(data)
|
53 |
-
total_chunks += len(data)
|
54 |
-
|
55 |
-
if os.path.exists("faiss_database"):
|
56 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
57 |
-
database.add_documents(all_data)
|
58 |
-
else:
|
59 |
-
database = FAISS.from_documents(all_data, embed)
|
60 |
-
|
61 |
-
database.save_local("faiss_database")
|
62 |
-
|
63 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
64 |
-
|
65 |
-
def get_embeddings():
|
66 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
67 |
-
|
68 |
-
def clear_cache():
|
69 |
-
if os.path.exists("faiss_database"):
|
70 |
-
os.remove("faiss_database")
|
71 |
-
return "Cache cleared successfully."
|
72 |
-
else:
|
73 |
-
return "No cache to clear."
|
74 |
-
|
75 |
-
def extract_text_from_webpage(html):
|
76 |
-
soup = BeautifulSoup(html, 'html.parser')
|
77 |
-
for script in soup(["script", "style"]):
|
78 |
-
script.extract()
|
79 |
-
text = soup.get_text()
|
80 |
-
lines = (line.strip() for line in text.splitlines())
|
81 |
-
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
82 |
-
text = '\n'.join(chunk for chunk in chunks if chunk)
|
83 |
-
return text
|
84 |
-
|
85 |
-
_useragent_list = [
|
86 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
87 |
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
|
88 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
89 |
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
|
90 |
-
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
91 |
-
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
|
92 |
-
]
|
93 |
-
|
94 |
-
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
|
95 |
-
escaped_term = urllib.parse.quote_plus(term)
|
96 |
-
start = 0
|
97 |
-
all_results = []
|
98 |
-
max_chars_per_page = 8000
|
99 |
-
|
100 |
-
with requests.Session() as session:
|
101 |
-
while start < num_results:
|
102 |
-
try:
|
103 |
-
user_agent = random.choice(_useragent_list)
|
104 |
-
headers = {
|
105 |
-
'User-Agent': user_agent
|
106 |
-
}
|
107 |
-
resp = session.get(
|
108 |
-
url="https://www.google.com/search",
|
109 |
-
headers=headers,
|
110 |
-
params={
|
111 |
-
"q": term,
|
112 |
-
"num": num_results - start,
|
113 |
-
"hl": lang,
|
114 |
-
"start": start,
|
115 |
-
"safe": safe,
|
116 |
-
},
|
117 |
-
timeout=timeout,
|
118 |
-
verify=ssl_verify,
|
119 |
-
)
|
120 |
-
resp.raise_for_status()
|
121 |
-
except requests.exceptions.RequestException as e:
|
122 |
-
print(f"Error retrieving search results: {e}")
|
123 |
-
break
|
124 |
-
|
125 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
126 |
-
result_block = soup.find_all("div", attrs={"class": "g"})
|
127 |
-
if not result_block:
|
128 |
-
break
|
129 |
-
|
130 |
-
for result in result_block:
|
131 |
-
link = result.find("a", href=True)
|
132 |
-
if link:
|
133 |
-
link = link["href"]
|
134 |
-
try:
|
135 |
-
webpage = session.get(link, headers=headers, timeout=timeout)
|
136 |
-
webpage.raise_for_status()
|
137 |
-
visible_text = extract_text_from_webpage(webpage.text)
|
138 |
-
if len(visible_text) > max_chars_per_page:
|
139 |
-
visible_text = visible_text[:max_chars_per_page] + "..."
|
140 |
-
all_results.append({"link": link, "text": visible_text})
|
141 |
-
except requests.exceptions.RequestException as e:
|
142 |
-
print(f"Error retrieving webpage content: {e}")
|
143 |
-
all_results.append({"link": link, "text": None})
|
144 |
-
else:
|
145 |
-
all_results.append({"link": None, "text": None})
|
146 |
-
start += len(result_block)
|
147 |
|
148 |
-
|
149 |
-
return [{"link": None, "text": "No information found in the web search results."}]
|
150 |
-
|
151 |
-
return all_results
|
152 |
-
|
153 |
-
def duckduckgo_search(query, max_results=5):
|
154 |
try:
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
})
|
163 |
-
return formatted_results
|
164 |
except Exception as e:
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
|
|
168 |
def respond(
|
169 |
message,
|
170 |
history: list[tuple[str, str]],
|
|
|
|
|
|
|
171 |
temperature,
|
172 |
top_p,
|
173 |
-
|
174 |
-
|
175 |
-
search_engine
|
176 |
):
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
if
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
192 |
-
|
193 |
-
# Use the context in the prompt
|
194 |
-
prompt_template = f"""
|
195 |
-
Answer the question based on the following context and web search results:
|
196 |
-
Context from documents:
|
197 |
-
{context_str}
|
198 |
-
|
199 |
-
Web Search Results:
|
200 |
-
{{search_results}}
|
201 |
-
|
202 |
-
Question: {{message}}
|
203 |
-
|
204 |
-
If the context and web search results don't contain relevant information, state that the information is not available.
|
205 |
-
Provide a concise and direct answer to the question.
|
206 |
-
"""
|
207 |
-
else:
|
208 |
-
prompt_template = """
|
209 |
-
Answer the question based on the following web search results:
|
210 |
-
Web Search Results:
|
211 |
-
{search_results}
|
212 |
-
|
213 |
-
Question: {message}
|
214 |
-
|
215 |
-
If the web search results don't contain relevant information, state that the information is not available.
|
216 |
-
Provide a concise and direct answer to the question.
|
217 |
-
"""
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
222 |
)
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
response += sources_section
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
with gr.Row():
|
245 |
-
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
246 |
-
update_button = gr.Button("Upload PDF")
|
247 |
-
|
248 |
-
update_output = gr.Textbox(label="Update Status")
|
249 |
-
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
|
250 |
-
|
251 |
-
with gr.Row():
|
252 |
-
with gr.Column(scale=2):
|
253 |
-
chatbot = gr.Chatbot(label="Conversation")
|
254 |
-
message_input = gr.Textbox(label="Enter your message")
|
255 |
-
submit_button = gr.Button("Submit")
|
256 |
-
with gr.Column(scale=1):
|
257 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
258 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
259 |
-
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
260 |
-
max_tokens = gr.Slider(minimum=1, maximum=1000, value=500, step=1, label="Max tokens")
|
261 |
-
search_engine = gr.Dropdown(["DuckDuckGo", "Google"], value="DuckDuckGo", label="Search Engine")
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
inputs=[
|
266 |
-
message_input,
|
267 |
-
gr.State([]), # Initialize empty history
|
268 |
-
temperature,
|
269 |
-
top_p,
|
270 |
-
repetition_penalty,
|
271 |
-
max_tokens,
|
272 |
-
search_engine
|
273 |
-
],
|
274 |
-
outputs=[chatbot]
|
275 |
)
|
276 |
-
|
277 |
-
clear_button = gr.Button("Clear Cache")
|
278 |
-
clear_output = gr.Textbox(label="Cache Status")
|
279 |
-
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
|
280 |
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import logging
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from transformers import HuggingFaceHub
|
6 |
+
|
7 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
8 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
9 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
10 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
11 |
+
from llama_cpp_agent.llm_output_settings import (
|
12 |
+
LlmStructuredOutputSettings,
|
13 |
+
LlmStructuredOutputType,
|
14 |
+
)
|
15 |
+
from llama_cpp_agent.tools import WebSearchTool
|
16 |
+
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
|
17 |
+
from pydantic import BaseModel, Field
|
18 |
+
from trafilatura import fetch_url, extract
|
19 |
+
import json
|
20 |
+
from datetime import datetime, timezone
|
21 |
+
from typing import List
|
22 |
|
23 |
+
llm = None
|
24 |
+
llm_model = None
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
27 |
|
28 |
+
examples = [
|
29 |
+
["latest news about Yann LeCun"],
|
30 |
+
["Latest news site:github.blog"],
|
31 |
+
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
|
32 |
+
["filetype:pdf intitle:python"]
|
33 |
+
]
|
34 |
+
|
35 |
+
def get_context_by_model(model_name):
|
36 |
+
model_context_limits = {
|
37 |
+
"Mistral-7B-Instruct-v0.3": 32768,
|
38 |
+
}
|
39 |
+
return model_context_limits.get(model_name, None)
|
40 |
+
|
41 |
+
def get_messages_formatter_type(model_name):
|
42 |
+
model_name = model_name.lower()
|
43 |
+
if "mistral" in model_name:
|
44 |
+
return MessagesFormatterType.MISTRAL
|
45 |
+
else:
|
46 |
+
return MessagesFormatterType.CHATML
|
47 |
+
|
48 |
def get_model(temperature, top_p, repetition_penalty):
|
49 |
return HuggingFaceHub(
|
50 |
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
57 |
huggingfacehub_api_token=huggingface_token
|
58 |
)
|
59 |
|
60 |
+
def get_server_time():
|
61 |
+
utc_time = datetime.now(timezone.utc)
|
62 |
+
return utc_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def get_website_content_from_url(url: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
+
downloaded = fetch_url(url)
|
67 |
+
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
|
68 |
+
if result:
|
69 |
+
result = json.loads(result)
|
70 |
+
return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
|
71 |
+
else:
|
72 |
+
return ""
|
|
|
|
|
73 |
except Exception as e:
|
74 |
+
return f"An error occurred: {str(e)}"
|
75 |
+
|
76 |
+
class CitingSources(BaseModel):
|
77 |
+
sources: List[str] = Field(
|
78 |
+
...,
|
79 |
+
description="List of sources to cite. Should be an URL of the source. E.g. GitHub URL, Blogpost URL or Newsletter URL."
|
80 |
+
)
|
81 |
+
|
82 |
+
def write_message_to_user():
|
83 |
+
return "Please write the message to the user."
|
84 |
|
85 |
+
@spaces.GPU(duration=120)
|
86 |
def respond(
|
87 |
message,
|
88 |
history: list[tuple[str, str]],
|
89 |
+
model,
|
90 |
+
system_message,
|
91 |
+
max_tokens,
|
92 |
temperature,
|
93 |
top_p,
|
94 |
+
top_k,
|
95 |
+
repeat_penalty,
|
|
|
96 |
):
|
97 |
+
global llm
|
98 |
+
global llm_model
|
99 |
+
chat_template = get_messages_formatter_type(model)
|
100 |
+
if llm is None or llm_model != model:
|
101 |
+
llm = get_model(temperature, top_p, repeat_penalty)
|
102 |
+
llm_model = model
|
103 |
+
provider = LlamaCppPythonProvider(llm)
|
104 |
+
logging.info(f"Loaded chat examples: {chat_template}")
|
105 |
+
search_tool = WebSearchTool(
|
106 |
+
llm_provider=provider,
|
107 |
+
message_formatter_type=chat_template,
|
108 |
+
max_tokens_search_results=12000,
|
109 |
+
max_tokens_per_summary=2048,
|
110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
web_search_agent = LlamaCppAgent(
|
113 |
+
provider,
|
114 |
+
system_prompt=web_search_system_prompt,
|
115 |
+
predefined_messages_formatter_type=chat_template,
|
116 |
+
debug_output=True,
|
117 |
)
|
118 |
|
119 |
+
answer_agent = LlamaCppAgent(
|
120 |
+
provider,
|
121 |
+
system_prompt=research_system_prompt,
|
122 |
+
predefined_messages_formatter_type=chat_template,
|
123 |
+
debug_output=True,
|
124 |
+
)
|
125 |
|
126 |
+
settings = provider.get_provider_default_settings()
|
127 |
+
settings.stream = False
|
128 |
+
settings.temperature = temperature
|
129 |
+
settings.top_k = top_k
|
130 |
+
settings.top_p = top_p
|
131 |
+
settings.max_tokens = max_tokens
|
132 |
+
settings.repeat_penalty = repeat_penalty
|
133 |
|
134 |
+
output_settings = LlmStructuredOutputSettings.from_functions(
|
135 |
+
[search_tool.get_tool()]
|
136 |
+
)
|
|
|
137 |
|
138 |
+
messages = BasicChatHistory()
|
139 |
+
|
140 |
+
for msn in history:
|
141 |
+
user = {"role": Roles.user, "content": msn[0]}
|
142 |
+
assistant = {"role": Roles.assistant, "content": msn[1]}
|
143 |
+
messages.add_message(user)
|
144 |
+
messages.add_message(assistant)
|
145 |
+
|
146 |
+
result = web_search_agent.get_chat_response(
|
147 |
+
message,
|
148 |
+
llm_sampling_settings=settings,
|
149 |
+
structured_output_settings=output_settings,
|
150 |
+
add_message_to_chat_history=False,
|
151 |
+
add_response_to_chat_history=False,
|
152 |
+
print_output=False,
|
153 |
+
)
|
154 |
|
155 |
+
outputs = ""
|
156 |
+
|
157 |
+
settings.stream = True
|
158 |
+
response_text = answer_agent.get_chat_response(
|
159 |
+
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
|
160 |
+
result[0]["return_value"],
|
161 |
+
role=Roles.tool,
|
162 |
+
llm_sampling_settings=settings,
|
163 |
+
chat_history=messages,
|
164 |
+
returns_streaming_generator=True,
|
165 |
+
print_output=False,
|
166 |
+
)
|
167 |
|
168 |
+
for text in response_text:
|
169 |
+
outputs += text
|
170 |
+
yield outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
|
173 |
+
[CitingSources], LlmStructuredOutputType.object_instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
citing_sources = answer_agent.get_chat_response(
|
177 |
+
"Cite the sources you used in your response.",
|
178 |
+
role=Roles.tool,
|
179 |
+
llm_sampling_settings=settings,
|
180 |
+
chat_history=messages,
|
181 |
+
returns_streaming_generator=False,
|
182 |
+
structured_output_settings=output_settings,
|
183 |
+
print_output=False,
|
184 |
+
)
|
185 |
+
outputs += "\n\nSources:\n"
|
186 |
+
outputs += "\n".join(citing_sources.sources)
|
187 |
+
yield outputs
|
188 |
+
|
189 |
+
demo = gr.ChatInterface(
|
190 |
+
respond,
|
191 |
+
additional_inputs=[
|
192 |
+
gr.Dropdown([
|
193 |
+
'Mistral-7B-Instruct-v0.3'
|
194 |
+
],
|
195 |
+
value="Mistral-7B-Instruct-v0.3",
|
196 |
+
label="Model"
|
197 |
+
),
|
198 |
+
gr.Textbox(value=web_search_system_prompt, label="System message"),
|
199 |
+
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
|
200 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
|
201 |
+
gr.Slider(
|
202 |
+
minimum=0.1,
|
203 |
+
maximum=1.0,
|
204 |
+
value=0.95,
|
205 |
+
step=0.05,
|
206 |
+
label="Top-p",
|
207 |
+
),
|
208 |
+
gr.Slider(
|
209 |
+
minimum=0,
|
210 |
+
maximum=100,
|
211 |
+
value=40,
|
212 |
+
step=1,
|
213 |
+
label="Top-k",
|
214 |
+
),
|
215 |
+
gr.Slider(
|
216 |
+
minimum=0.0,
|
217 |
+
maximum=2.0,
|
218 |
+
value=1.1,
|
219 |
+
step=0.1,
|
220 |
+
label="Repetition penalty",
|
221 |
+
),
|
222 |
+
],
|
223 |
+
theme=gr.themes.Soft(
|
224 |
+
primary_hue="orange",
|
225 |
+
secondary_hue="amber",
|
226 |
+
neutral_hue="gray",
|
227 |
+
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
|
228 |
+
body_background_fill_dark="#0c0505",
|
229 |
+
block_background_fill_dark="#0c0505",
|
230 |
+
block_border_width="1px",
|
231 |
+
block_title_background_fill_dark="#1b0f0f",
|
232 |
+
input_background_fill_dark="#140b0b",
|
233 |
+
button_secondary_background_fill_dark="#140b0b",
|
234 |
+
border_color_accent_dark="#1b0f0f",
|
235 |
+
border_color_primary_dark="#1b0f0f",
|
236 |
+
slider_color="#ff911a",
|
237 |
+
button_primary_background_fill="#ff911a",
|
238 |
+
button_primary_background_fill_dark="#ff911a",
|
239 |
+
button_primary_text_color="#f9f9f9",
|
240 |
+
button_primary_text_color_dark="#f9f9f9"
|
241 |
+
),
|
242 |
+
examples=examples,
|
243 |
+
title="llama.cpp agent",
|
244 |
+
)
|
245 |
+
|
246 |
+
demo.queue().launch()
|