Shreyas094
commited on
Commit
•
9b9a599
1
Parent(s):
59ce7af
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import re
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
from duckduckgo_search import DDGS
|
7 |
-
from typing import List
|
8 |
from pydantic import BaseModel, Field
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from langchain_community.vectorstores import FAISS
|
@@ -13,7 +13,6 @@ from langchain_core.documents import Document
|
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
from llama_parse import LlamaParse
|
16 |
-
from langchain_core.documents import Document
|
17 |
from huggingface_hub import InferenceClient
|
18 |
import inspect
|
19 |
import logging
|
@@ -37,7 +36,12 @@ MODELS = [
|
|
37 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
38 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
39 |
"@cf/meta/llama-3.1-8b-instruct",
|
40 |
-
"mistralai/Mistral-Nemo-Instruct-2407"
|
|
|
|
|
|
|
|
|
|
|
41 |
]
|
42 |
|
43 |
# Initialize LlamaParse
|
@@ -67,7 +71,7 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
|
|
67 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
68 |
|
69 |
def get_embeddings():
|
70 |
-
return HuggingFaceEmbeddings(model_name="
|
71 |
|
72 |
# Add this at the beginning of your script, after imports
|
73 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
@@ -140,8 +144,10 @@ def update_vectors(files, parser):
|
|
140 |
# Save the updated list of documents
|
141 |
save_documents(uploaded_documents)
|
142 |
|
|
|
143 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
|
144 |
|
|
|
145 |
def delete_documents(selected_docs):
|
146 |
global uploaded_documents
|
147 |
|
@@ -271,48 +277,14 @@ def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temp
|
|
271 |
print(f"Final clean response: {final_response[:100]}...")
|
272 |
return final_response
|
273 |
|
274 |
-
|
275 |
-
def search(self, query: str, num_results: int = 3):
|
276 |
-
results = DDGS().text(query, region='wt-wt', safesearch='off', max_results=num_results)
|
277 |
-
return [res["href"] for res in results]
|
278 |
-
|
279 |
-
class TrafilaturaWebCrawler:
|
280 |
-
def get_website_content_from_url(self, url: str) -> str:
|
281 |
-
try:
|
282 |
-
downloaded = fetch_url(url)
|
283 |
-
if downloaded is None:
|
284 |
-
return f"Failed to fetch content from URL: {url}"
|
285 |
-
|
286 |
-
result = extract(downloaded, output_format='json', include_comments=False, with_metadata=True, url=url)
|
287 |
-
|
288 |
-
if result:
|
289 |
-
result_dict = json.loads(result)
|
290 |
-
title = result_dict.get('title', 'No title found')
|
291 |
-
content = result_dict.get('text', 'No content extracted')
|
292 |
-
|
293 |
-
if content == 'No content extracted':
|
294 |
-
content = extract(downloaded, include_comments=False)
|
295 |
-
|
296 |
-
return f'=========== Website Title: {title} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{content}\n\n=========== Website Content End ===========\n\n'
|
297 |
-
else:
|
298 |
-
return f"No content extracted from URL: {url}"
|
299 |
-
except Exception as e:
|
300 |
-
return f"An error occurred while processing {url}: {str(e)}"
|
301 |
-
|
302 |
-
class CitingSources(BaseModel):
|
303 |
-
sources: List[str] = Field(
|
304 |
-
...,
|
305 |
-
description="List of sources to cite. Should be an URL of the source."
|
306 |
-
)
|
307 |
-
|
308 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
309 |
if not message.strip():
|
310 |
return "", history
|
311 |
|
312 |
history = history + [(message, "")]
|
313 |
|
314 |
try:
|
315 |
-
for response in respond(message, history, model, temperature, num_calls
|
316 |
history[-1] = (message, response)
|
317 |
yield history
|
318 |
except gr.CancelledError:
|
@@ -322,116 +294,181 @@ def chatbot_interface(message, history, use_web_search, model, temperature, num_
|
|
322 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
323 |
yield history
|
324 |
|
325 |
-
def retry_last_response(history,
|
326 |
if not history:
|
327 |
return history
|
328 |
|
329 |
last_user_msg = history[-1][0]
|
330 |
history = history[:-1] # Remove the last response
|
331 |
|
332 |
-
return chatbot_interface(last_user_msg, history,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
logging.info(f"User Query: {message}")
|
336 |
logging.info(f"Model Used: {model}")
|
337 |
-
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
338 |
logging.info(f"Selected Documents: {selected_docs}")
|
339 |
-
logging.info(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
instruction = INSTRUCTION_PROMPTS[instruction_key]
|
345 |
-
context_str = get_context_for_summary(selected_docs)
|
346 |
-
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
|
347 |
-
use_web_search = False # Ensure we use PDF search for summaries
|
348 |
-
|
349 |
-
if use_web_search:
|
350 |
-
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
351 |
-
response = f"{main_content}\n\n{sources}"
|
352 |
-
first_line = response.split('\n')[0] if response else ''
|
353 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
354 |
-
yield response
|
355 |
else:
|
|
|
|
|
|
|
|
|
356 |
embed = get_embeddings()
|
357 |
if os.path.exists("faiss_database"):
|
358 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
359 |
-
retriever = database.as_retriever()
|
360 |
|
361 |
-
# Filter relevant documents based on user selection
|
362 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
363 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
364 |
|
365 |
if not relevant_docs:
|
366 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
367 |
return
|
368 |
-
|
369 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
|
|
370 |
else:
|
371 |
context_str = "No documents available."
|
372 |
yield "No documents available. Please upload PDF documents to answer questions."
|
373 |
return
|
374 |
|
375 |
-
if model
|
|
|
|
|
|
|
|
|
376 |
# Use Cloudflare API
|
377 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
378 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
379 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
380 |
yield partial_response
|
381 |
else:
|
382 |
# Use Hugging Face API
|
383 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
384 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
385 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
386 |
yield partial_response
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
396 |
-
|
397 |
-
logging.basicConfig(level=logging.DEBUG)
|
398 |
-
|
399 |
-
def get_context_for_summary(selected_docs):
|
400 |
-
embed = get_embeddings()
|
401 |
-
if os.path.exists("faiss_database"):
|
402 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
403 |
-
retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks
|
404 |
-
|
405 |
-
# Create a generic query that covers common financial summary topics
|
406 |
-
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
|
407 |
-
|
408 |
-
relevant_docs = retriever.get_relevant_documents(generic_query)
|
409 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
410 |
-
|
411 |
-
if not filtered_docs:
|
412 |
-
return "No relevant information found in the selected documents for summary generation."
|
413 |
-
|
414 |
-
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
415 |
-
return context_str
|
416 |
-
else:
|
417 |
-
return "No documents available for summary generation."
|
418 |
-
|
419 |
-
def get_context_for_query(query, selected_docs):
|
420 |
-
embed = get_embeddings()
|
421 |
-
if os.path.exists("faiss_database"):
|
422 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
423 |
-
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks
|
424 |
-
|
425 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
426 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
427 |
-
|
428 |
-
if not filtered_docs:
|
429 |
-
return "No relevant information found in the selected documents for the given query."
|
430 |
|
431 |
-
|
432 |
-
return context_str
|
433 |
-
else:
|
434 |
-
return "No documents available to answer the query."
|
435 |
|
436 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
437 |
headers = {
|
@@ -448,8 +485,7 @@ Write a detailed and complete response that answers the following user question:
|
|
448 |
instruction = f"""Using the following context:
|
449 |
{context}
|
450 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
451 |
-
|
452 |
-
Format the hyperlink in Markdown (e.g., [relevant text](URL))."""
|
453 |
|
454 |
inputs = [
|
455 |
{"role": "system", "content": instruction},
|
@@ -500,51 +536,6 @@ def create_web_search_vectors(search_results):
|
|
500 |
|
501 |
return FAISS.from_documents(documents, embed)
|
502 |
|
503 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
504 |
-
searcher = SimpleDDGSearch()
|
505 |
-
search_results = searcher.search(query, num_results=3)
|
506 |
-
|
507 |
-
crawler = TrafilaturaWebCrawler()
|
508 |
-
context = ""
|
509 |
-
|
510 |
-
for url in search_results:
|
511 |
-
context += crawler.get_website_content_from_url(url) + "\n"
|
512 |
-
|
513 |
-
prompt = f"""You are an expert AI named Sentinel and have been given a task to create a detailed and complete research article using the following context from web search results:
|
514 |
-
{context} that fulfills the following user request: '{query}'
|
515 |
-
Cover all the key points discussed in the {context} provided to you. Also stick with the context provided to you do not report any misleading or out of context information.
|
516 |
-
Also the research document should include the source URL as a hyperlink within the text. Ensure that the hyperlink is embedded in a relevant phrase or word within the response.
|
517 |
-
Format the hyperlink in Markdown (e.g., [relevant text](URL))."""
|
518 |
-
|
519 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
520 |
-
# Use Cloudflare API
|
521 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
522 |
-
yield response, "" # Yield streaming response without sources
|
523 |
-
else:
|
524 |
-
# Use Hugging Face API
|
525 |
-
client = InferenceClient(model, token=huggingface_token)
|
526 |
-
|
527 |
-
main_content = ""
|
528 |
-
for i in range(num_calls):
|
529 |
-
for message in client.chat_completion(
|
530 |
-
messages=[{"role": "user", "content": prompt}],
|
531 |
-
max_tokens=10000,
|
532 |
-
temperature=temperature,
|
533 |
-
stream=True,
|
534 |
-
):
|
535 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
536 |
-
chunk = message.choices[0].delta.content
|
537 |
-
main_content += chunk
|
538 |
-
yield main_content, "" # Yield partial main content without sources
|
539 |
-
|
540 |
-
|
541 |
-
INSTRUCTION_PROMPTS = {
|
542 |
-
"Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
|
543 |
-
"Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
|
544 |
-
"Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
|
545 |
-
# Add more instruction prompts as needed
|
546 |
-
}
|
547 |
-
|
548 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
549 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
550 |
|
@@ -604,7 +595,7 @@ Write a detailed and complete response that answers the following user question:
|
|
604 |
logging.info(f"API call {i+1}/{num_calls}")
|
605 |
for message in client.chat_completion(
|
606 |
messages=[{"role": "user", "content": prompt}],
|
607 |
-
max_tokens=
|
608 |
temperature=temperature,
|
609 |
stream=True,
|
610 |
):
|
@@ -660,12 +651,12 @@ def refresh_documents():
|
|
660 |
# Define the checkbox outside the demo block
|
661 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
662 |
|
663 |
-
use_web_search = gr.Checkbox(label="Use Web Search", value=
|
664 |
|
665 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
666 |
|
667 |
-
|
668 |
-
|
669 |
demo = gr.ChatInterface(
|
670 |
respond,
|
671 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
@@ -673,12 +664,11 @@ demo = gr.ChatInterface(
|
|
673 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
674 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
675 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
676 |
-
|
677 |
-
|
678 |
-
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None")
|
679 |
],
|
680 |
-
title="AI-powered
|
681 |
-
description="Chat with your PDFs
|
682 |
theme=gr.themes.Soft(
|
683 |
primary_hue="orange",
|
684 |
secondary_hue="amber",
|
@@ -701,11 +691,12 @@ demo = gr.ChatInterface(
|
|
701 |
examples=[
|
702 |
["Tell me about the contents of the uploaded PDFs."],
|
703 |
["What are the main topics discussed in the documents?"],
|
704 |
-
["Can you summarize the key points from the PDFs?"]
|
|
|
705 |
],
|
706 |
cache_examples=False,
|
707 |
analytics_enabled=False,
|
708 |
-
textbox=gr.Textbox(placeholder=
|
709 |
chatbot = gr.Chatbot(
|
710 |
show_copy_button=True,
|
711 |
likeable=True,
|
@@ -715,10 +706,10 @@ demo = gr.ChatInterface(
|
|
715 |
)
|
716 |
)
|
717 |
|
|
|
718 |
# Add file upload functionality
|
719 |
with demo:
|
720 |
gr.Markdown("## Upload and Manage PDF Documents")
|
721 |
-
|
722 |
with gr.Row():
|
723 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
724 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
@@ -729,19 +720,25 @@ with demo:
|
|
729 |
delete_button = gr.Button("Delete Selected Documents")
|
730 |
|
731 |
# Update both the output text and the document selector
|
732 |
-
update_button.click(
|
733 |
-
|
734 |
-
|
|
|
|
|
735 |
|
736 |
# Add the refresh button functionality
|
737 |
-
refresh_button.click(
|
738 |
-
|
739 |
-
|
|
|
|
|
740 |
|
741 |
# Add the delete button functionality
|
742 |
-
delete_button.click(
|
743 |
-
|
744 |
-
|
|
|
|
|
745 |
|
746 |
gr.Markdown(
|
747 |
"""
|
|
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
from duckduckgo_search import DDGS
|
7 |
+
from typing import List, Dict
|
8 |
from pydantic import BaseModel, Field
|
9 |
from tempfile import NamedTemporaryFile
|
10 |
from langchain_community.vectorstores import FAISS
|
|
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
from llama_parse import LlamaParse
|
|
|
16 |
from huggingface_hub import InferenceClient
|
17 |
import inspect
|
18 |
import logging
|
|
|
36 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
37 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
38 |
"@cf/meta/llama-3.1-8b-instruct",
|
39 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
40 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
41 |
+
"duckduckgo/gpt-4o-mini",
|
42 |
+
"duckduckgo/claude-3-haiku",
|
43 |
+
"duckduckgo/llama-3.1-70b",
|
44 |
+
"duckduckgo/mixtral-8x7b"
|
45 |
]
|
46 |
|
47 |
# Initialize LlamaParse
|
|
|
71 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
72 |
|
73 |
def get_embeddings():
|
74 |
+
return HuggingFaceEmbeddings(model_name="avsolatorio/GIST-Embedding-v0")
|
75 |
|
76 |
# Add this at the beginning of your script, after imports
|
77 |
DOCUMENTS_FILE = "uploaded_documents.json"
|
|
|
144 |
# Save the updated list of documents
|
145 |
save_documents(uploaded_documents)
|
146 |
|
147 |
+
# Return a tuple with the status message and the updated document list
|
148 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
|
149 |
|
150 |
+
|
151 |
def delete_documents(selected_docs):
|
152 |
global uploaded_documents
|
153 |
|
|
|
277 |
print(f"Final clean response: {final_response[:100]}...")
|
278 |
return final_response
|
279 |
|
280 |
+
def chatbot_interface(message, history, model, temperature, num_calls):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
if not message.strip():
|
282 |
return "", history
|
283 |
|
284 |
history = history + [(message, "")]
|
285 |
|
286 |
try:
|
287 |
+
for response in respond(message, history, model, temperature, num_calls):
|
288 |
history[-1] = (message, response)
|
289 |
yield history
|
290 |
except gr.CancelledError:
|
|
|
294 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
295 |
yield history
|
296 |
|
297 |
+
def retry_last_response(history, model, temperature, num_calls):
|
298 |
if not history:
|
299 |
return history
|
300 |
|
301 |
last_user_msg = history[-1][0]
|
302 |
history = history[:-1] # Remove the last response
|
303 |
|
304 |
+
return chatbot_interface(last_user_msg, history, model, temperature, num_calls)
|
305 |
+
|
306 |
+
def truncate_context(context, max_length=16000):
|
307 |
+
"""Truncate the context to a maximum length."""
|
308 |
+
if len(context) <= max_length:
|
309 |
+
return context
|
310 |
+
return context[:max_length] + "..."
|
311 |
+
|
312 |
+
def get_response_from_duckduckgo(query, model, context, num_calls=1, temperature=0.2):
|
313 |
+
logging.info(f"Using DuckDuckGo chat with model: {model}")
|
314 |
+
ddg_model = model.split('/')[-1] # Extract the model name from the full string
|
315 |
+
|
316 |
+
# Truncate the context to avoid exceeding input limits
|
317 |
+
truncated_context = truncate_context(context)
|
318 |
+
|
319 |
+
full_response = ""
|
320 |
+
for _ in range(num_calls):
|
321 |
+
try:
|
322 |
+
# Include truncated context in the query
|
323 |
+
contextualized_query = f"Using the following context:\n{truncated_context}\n\nUser question: {query}"
|
324 |
+
results = DDGS().chat(contextualized_query, model=ddg_model)
|
325 |
+
full_response += results + "\n"
|
326 |
+
logging.info(f"DuckDuckGo API response received. Length: {len(results)}")
|
327 |
+
except Exception as e:
|
328 |
+
logging.error(f"Error in generating response from DuckDuckGo: {str(e)}")
|
329 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again."
|
330 |
+
return
|
331 |
+
|
332 |
+
yield full_response.strip()
|
333 |
+
|
334 |
+
class ConversationManager:
|
335 |
+
def __init__(self):
|
336 |
+
self.history = []
|
337 |
+
self.current_context = None
|
338 |
+
|
339 |
+
def add_interaction(self, query, response):
|
340 |
+
self.history.append((query, response))
|
341 |
+
self.current_context = f"Previous query: {query}\nPrevious response summary: {response[:200]}..."
|
342 |
+
|
343 |
+
def get_context(self):
|
344 |
+
return self.current_context
|
345 |
|
346 |
+
conversation_manager = ConversationManager()
|
347 |
+
|
348 |
+
def get_web_search_results(query: str, max_results: int = 10) -> List[Dict[str, str]]:
|
349 |
+
try:
|
350 |
+
results = list(DDGS().text(query, max_results=max_results))
|
351 |
+
if not results:
|
352 |
+
print(f"No results found for query: {query}")
|
353 |
+
return results
|
354 |
+
except Exception as e:
|
355 |
+
print(f"An error occurred during web search: {str(e)}")
|
356 |
+
return [{"error": f"An error occurred during web search: {str(e)}"}]
|
357 |
+
|
358 |
+
def rephrase_query(original_query: str, conversation_manager: ConversationManager) -> str:
|
359 |
+
context = conversation_manager.get_context()
|
360 |
+
if context:
|
361 |
+
prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
|
362 |
+
|
363 |
+
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
|
364 |
+
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
|
365 |
+
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
|
366 |
+
4. Provide ONLY the rephrased query without any additional explanation or reasoning.
|
367 |
+
|
368 |
+
Context: {context}
|
369 |
+
|
370 |
+
New query: {original_query}
|
371 |
+
|
372 |
+
Rephrased query:"""
|
373 |
+
response = DDGS().chat(prompt, model="llama-3.1-70b")
|
374 |
+
rephrased_query = response.split('\n')[0].strip()
|
375 |
+
return rephrased_query
|
376 |
+
return original_query
|
377 |
+
|
378 |
+
def summarize_web_results(query: str, search_results: List[Dict[str, str]], conversation_manager: ConversationManager) -> str:
|
379 |
+
try:
|
380 |
+
context = conversation_manager.get_context()
|
381 |
+
search_context = "\n\n".join([f"Title: {result['title']}\nContent: {result['body']}" for result in search_results])
|
382 |
+
|
383 |
+
prompt = f"""You are a highly intelligent & expert analyst and your job is to skillfully articulate the web search results about '{query}' and considering the context: {context},
|
384 |
+
You have to create a comprehensive news summary FOCUSING on the context provided to you.
|
385 |
+
Include key facts, relevant statistics, and expert opinions if available.
|
386 |
+
Ensure the article is well-structured with an introduction, main body, and conclusion, IF NECESSARY.
|
387 |
+
Address the query in the context of the ongoing conversation IF APPLICABLE.
|
388 |
+
Cite sources directly within the generated text and not at the end of the generated text, integrating URLs where appropriate to support the information provided:
|
389 |
+
|
390 |
+
{search_context}
|
391 |
+
|
392 |
+
Article:"""
|
393 |
+
|
394 |
+
summary = DDGS().chat(prompt, model="llama-3.1-70b")
|
395 |
+
return summary
|
396 |
+
except Exception as e:
|
397 |
+
return f"An error occurred during summarization: {str(e)}"
|
398 |
+
|
399 |
+
# Modify the existing respond function to handle both PDF and web search
|
400 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
401 |
logging.info(f"User Query: {message}")
|
402 |
logging.info(f"Model Used: {model}")
|
|
|
403 |
logging.info(f"Selected Documents: {selected_docs}")
|
404 |
+
logging.info(f"Use Web Search: {use_web_search}")
|
405 |
+
|
406 |
+
if use_web_search:
|
407 |
+
original_query = message
|
408 |
+
rephrased_query = rephrase_query(message, conversation_manager)
|
409 |
+
logging.info(f"Original query: {original_query}")
|
410 |
+
logging.info(f"Rephrased query: {rephrased_query}")
|
411 |
+
|
412 |
+
final_summary = ""
|
413 |
+
for _ in range(num_calls):
|
414 |
+
search_results = get_web_search_results(rephrased_query)
|
415 |
+
if not search_results:
|
416 |
+
final_summary += f"No search results found for the query: {rephrased_query}\n\n"
|
417 |
+
elif "error" in search_results[0]:
|
418 |
+
final_summary += search_results[0]["error"] + "\n\n"
|
419 |
+
else:
|
420 |
+
summary = summarize_web_results(rephrased_query, search_results, conversation_manager)
|
421 |
+
final_summary += summary + "\n\n"
|
422 |
|
423 |
+
if final_summary:
|
424 |
+
conversation_manager.add_interaction(original_query, final_summary)
|
425 |
+
yield final_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
else:
|
427 |
+
yield "Unable to generate a response. Please try a different query."
|
428 |
+
else:
|
429 |
+
# Existing PDF search logic
|
430 |
+
try:
|
431 |
embed = get_embeddings()
|
432 |
if os.path.exists("faiss_database"):
|
433 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
434 |
+
retriever = database.as_retriever(search_kwargs={"k": 20})
|
435 |
|
|
|
436 |
all_relevant_docs = retriever.get_relevant_documents(message)
|
437 |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
438 |
|
439 |
if not relevant_docs:
|
440 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
441 |
return
|
442 |
+
|
443 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
444 |
+
logging.info(f"Context length: {len(context_str)}")
|
445 |
else:
|
446 |
context_str = "No documents available."
|
447 |
yield "No documents available. Please upload PDF documents to answer questions."
|
448 |
return
|
449 |
|
450 |
+
if model.startswith("duckduckgo/"):
|
451 |
+
# Use DuckDuckGo chat with context
|
452 |
+
for partial_response in get_response_from_duckduckgo(message, model, context_str, num_calls, temperature):
|
453 |
+
yield partial_response
|
454 |
+
elif model == "@cf/meta/llama-3.1-8b-instruct":
|
455 |
# Use Cloudflare API
|
456 |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
|
|
|
|
457 |
yield partial_response
|
458 |
else:
|
459 |
# Use Hugging Face API
|
460 |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
|
|
|
|
461 |
yield partial_response
|
462 |
+
except Exception as e:
|
463 |
+
logging.error(f"Error with {model}: {str(e)}")
|
464 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
465 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
466 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
467 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, selected_docs)
|
468 |
+
else:
|
469 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
+
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
|
|
|
472 |
|
473 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
474 |
headers = {
|
|
|
485 |
instruction = f"""Using the following context:
|
486 |
{context}
|
487 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
488 |
+
After writing the document, please provide a list of sources used in your response."""
|
|
|
489 |
|
490 |
inputs = [
|
491 |
{"role": "system", "content": instruction},
|
|
|
536 |
|
537 |
return FAISS.from_documents(documents, embed)
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
540 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
541 |
|
|
|
595 |
logging.info(f"API call {i+1}/{num_calls}")
|
596 |
for message in client.chat_completion(
|
597 |
messages=[{"role": "user", "content": prompt}],
|
598 |
+
max_tokens=20000,
|
599 |
temperature=temperature,
|
600 |
stream=True,
|
601 |
):
|
|
|
651 |
# Define the checkbox outside the demo block
|
652 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
653 |
|
654 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
655 |
|
656 |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
657 |
|
658 |
+
# Update the demo interface
|
659 |
+
# Update the Gradio interface
|
660 |
demo = gr.ChatInterface(
|
661 |
respond,
|
662 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
|
|
664 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
665 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
666 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
667 |
+
gr.Checkbox(label="Use Web Search", value=True),
|
668 |
+
gr.CheckboxGroup(label="Select documents to query")
|
|
|
669 |
],
|
670 |
+
title="AI-powered PDF Chat and Web Search Assistant",
|
671 |
+
description="Chat with your PDFs or use web search to answer questions.",
|
672 |
theme=gr.themes.Soft(
|
673 |
primary_hue="orange",
|
674 |
secondary_hue="amber",
|
|
|
691 |
examples=[
|
692 |
["Tell me about the contents of the uploaded PDFs."],
|
693 |
["What are the main topics discussed in the documents?"],
|
694 |
+
["Can you summarize the key points from the PDFs?"],
|
695 |
+
["What's the latest news about artificial intelligence?"]
|
696 |
],
|
697 |
cache_examples=False,
|
698 |
analytics_enabled=False,
|
699 |
+
textbox=gr.Textbox(placeholder="Ask a question about the uploaded PDFs or any topic", container=False, scale=7),
|
700 |
chatbot = gr.Chatbot(
|
701 |
show_copy_button=True,
|
702 |
likeable=True,
|
|
|
706 |
)
|
707 |
)
|
708 |
|
709 |
+
# Add file upload functionality
|
710 |
# Add file upload functionality
|
711 |
with demo:
|
712 |
gr.Markdown("## Upload and Manage PDF Documents")
|
|
|
713 |
with gr.Row():
|
714 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
715 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
|
|
720 |
delete_button = gr.Button("Delete Selected Documents")
|
721 |
|
722 |
# Update both the output text and the document selector
|
723 |
+
update_button.click(
|
724 |
+
update_vectors,
|
725 |
+
inputs=[file_input, parser_dropdown],
|
726 |
+
outputs=[update_output, demo.additional_inputs[-1]] # Use the CheckboxGroup from additional_inputs
|
727 |
+
)
|
728 |
|
729 |
# Add the refresh button functionality
|
730 |
+
refresh_button.click(
|
731 |
+
refresh_documents,
|
732 |
+
inputs=[],
|
733 |
+
outputs=[demo.additional_inputs[-1]] # Use the CheckboxGroup from additional_inputs
|
734 |
+
)
|
735 |
|
736 |
# Add the delete button functionality
|
737 |
+
delete_button.click(
|
738 |
+
delete_documents,
|
739 |
+
inputs=[demo.additional_inputs[-1]], # Use the CheckboxGroup from additional_inputs
|
740 |
+
outputs=[update_output, demo.additional_inputs[-1]]
|
741 |
+
)
|
742 |
|
743 |
gr.Markdown(
|
744 |
"""
|