Shreyas094
commited on
Commit
•
a6abb8f
1
Parent(s):
1f50701
Update app.py
Browse files
app.py
CHANGED
@@ -14,15 +14,26 @@ from llama_parse import LlamaParse
|
|
14 |
from langchain_core.documents import Document
|
15 |
from huggingface_hub import InferenceClient
|
16 |
import inspect
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Environment variables and configurations
|
19 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
20 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
MODELS = [
|
23 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
24 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
25 |
-
"
|
26 |
]
|
27 |
|
28 |
# Initialize LlamaParse
|
@@ -79,31 +90,71 @@ def update_vectors(files, parser):
|
|
79 |
|
80 |
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
81 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
82 |
-
client = InferenceClient(model, token=huggingface_token)
|
83 |
full_response = ""
|
84 |
messages = [{"role": "user", "content": prompt}]
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
print("
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Clean up the response
|
109 |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
@@ -144,16 +195,15 @@ def chatbot_interface(message, history, use_web_search, model, temperature, num_
|
|
144 |
history = history + [(message, "")]
|
145 |
|
146 |
try:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
yield history
|
151 |
-
else:
|
152 |
-
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
153 |
-
history[-1] = (message, partial_response)
|
154 |
-
yield history
|
155 |
except gr.CancelledError:
|
156 |
yield history
|
|
|
|
|
|
|
|
|
157 |
|
158 |
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
159 |
if not history:
|
@@ -165,12 +215,103 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
|
165 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
166 |
|
167 |
def respond(message, history, model, temperature, num_calls, use_web_search):
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
176 |
search_results = duckduckgo_search(query)
|
@@ -181,21 +322,27 @@ def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
|
181 |
{context}
|
182 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
183 |
After writing the document, please provide a list of sources used in your response."""
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
):
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
201 |
embed = get_embeddings()
|
@@ -209,24 +356,30 @@ def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
|
209 |
relevant_docs = retriever.get_relevant_documents(query)
|
210 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
211 |
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
{context_str}
|
214 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
|
231 |
def vote(data: gr.LikeData):
|
232 |
if data.liked:
|
@@ -299,7 +452,7 @@ with demo:
|
|
299 |
1. Upload PDF documents using the file input at the top.
|
300 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
301 |
3. Ask questions in the chat interface.
|
302 |
-
4. Toggle "Use Web Search" to switch between PDF chat and web search
|
303 |
5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
304 |
6. Use the provided examples or ask your own questions.
|
305 |
"""
|
|
|
14 |
from langchain_core.documents import Document
|
15 |
from huggingface_hub import InferenceClient
|
16 |
import inspect
|
17 |
+
import logging
|
18 |
+
|
19 |
+
|
20 |
+
# Set up basic configuration for logging
|
21 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
|
23 |
# Environment variables and configurations
|
24 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
25 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
26 |
+
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
27 |
+
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
28 |
+
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
29 |
+
|
30 |
+
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
31 |
+
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
32 |
|
33 |
MODELS = [
|
34 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
35 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
36 |
+
"@cf/meta/llama-3.1-8b-instruct"
|
37 |
]
|
38 |
|
39 |
# Initialize LlamaParse
|
|
|
90 |
|
91 |
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
92 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
|
|
93 |
full_response = ""
|
94 |
messages = [{"role": "user", "content": prompt}]
|
95 |
|
96 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
97 |
+
# Cloudflare API
|
98 |
+
for i in range(num_calls):
|
99 |
+
print(f"Starting Cloudflare API call {i+1}")
|
100 |
+
if should_stop:
|
101 |
+
print("Stop clicked, breaking loop")
|
102 |
+
break
|
103 |
+
try:
|
104 |
+
response = requests.post(
|
105 |
+
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
106 |
+
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
107 |
+
json={
|
108 |
+
"stream": true,
|
109 |
+
"messages": [
|
110 |
+
{"role": "system", "content": "You are a friendly assistant"},
|
111 |
+
{"role": "user", "content": prompt}
|
112 |
+
],
|
113 |
+
"max_tokens": max_tokens,
|
114 |
+
"temperature": temperature
|
115 |
+
},
|
116 |
+
stream=true
|
117 |
+
)
|
118 |
+
|
119 |
+
for line in response.iter_lines():
|
120 |
+
if should_stop:
|
121 |
+
print("Stop clicked during streaming, breaking")
|
122 |
+
break
|
123 |
+
if line:
|
124 |
+
try:
|
125 |
+
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
126 |
+
chunk = json_data['response']
|
127 |
+
full_response += chunk
|
128 |
+
except json.JSONDecodeError:
|
129 |
+
continue
|
130 |
+
print(f"Cloudflare API call {i+1} completed")
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error in generating response from Cloudflare: {str(e)}")
|
133 |
+
else:
|
134 |
+
# Original Hugging Face API logic
|
135 |
+
client = InferenceClient(model, token=huggingface_token)
|
136 |
+
|
137 |
+
for i in range(num_calls):
|
138 |
+
print(f"Starting Hugging Face API call {i+1}")
|
139 |
+
if should_stop:
|
140 |
+
print("Stop clicked, breaking loop")
|
141 |
+
break
|
142 |
+
try:
|
143 |
+
for message in client.chat_completion(
|
144 |
+
messages=messages,
|
145 |
+
max_tokens=max_tokens,
|
146 |
+
temperature=temperature,
|
147 |
+
stream=True,
|
148 |
+
):
|
149 |
+
if should_stop:
|
150 |
+
print("Stop clicked during streaming, breaking")
|
151 |
+
break
|
152 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
153 |
+
chunk = message.choices[0].delta.content
|
154 |
+
full_response += chunk
|
155 |
+
print(f"Hugging Face API call {i+1} completed")
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error in generating response from Hugging Face: {str(e)}")
|
158 |
|
159 |
# Clean up the response
|
160 |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
|
|
195 |
history = history + [(message, "")]
|
196 |
|
197 |
try:
|
198 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
199 |
+
history[-1] = (message, response)
|
200 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
201 |
except gr.CancelledError:
|
202 |
yield history
|
203 |
+
except Exception as e:
|
204 |
+
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
205 |
+
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
206 |
+
yield history
|
207 |
|
208 |
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
209 |
if not history:
|
|
|
215 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
216 |
|
217 |
def respond(message, history, model, temperature, num_calls, use_web_search):
|
218 |
+
logging.info(f"User Query: {message}")
|
219 |
+
logging.info(f"Model Used: {model}")
|
220 |
+
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
221 |
+
|
222 |
+
try:
|
223 |
+
if use_web_search:
|
224 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
225 |
+
response = f"{main_content}\n\n{sources}"
|
226 |
+
first_line = response.split('\n')[0] if response else ''
|
227 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
228 |
+
yield response
|
229 |
+
else:
|
230 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
231 |
+
# Use Cloudflare API
|
232 |
+
embed = get_embeddings()
|
233 |
+
if os.path.exists("faiss_database"):
|
234 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
235 |
+
retriever = database.as_retriever()
|
236 |
+
relevant_docs = retriever.get_relevant_documents(message)
|
237 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
238 |
+
else:
|
239 |
+
context_str = "No documents available."
|
240 |
+
|
241 |
+
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
242 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
243 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
244 |
+
yield partial_response
|
245 |
+
else:
|
246 |
+
# Use Hugging Face API
|
247 |
+
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
248 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
249 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
250 |
+
yield partial_response
|
251 |
+
except Exception as e:
|
252 |
+
logging.error(f"Error with {model}: {str(e)}")
|
253 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
254 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
255 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
256 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search)
|
257 |
+
else:
|
258 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
259 |
+
|
260 |
+
logging.basicConfig(level=logging.DEBUG)
|
261 |
+
|
262 |
+
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
263 |
+
headers = {
|
264 |
+
"Authorization": f"Bearer {API_TOKEN}",
|
265 |
+
"Content-Type": "application/json"
|
266 |
+
}
|
267 |
+
model = "@cf/meta/llama-3.1-8b-instruct"
|
268 |
+
|
269 |
+
if search_type == "pdf":
|
270 |
+
instruction = f"""Using the following context:
|
271 |
+
{context}
|
272 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'"""
|
273 |
+
else: # web search
|
274 |
+
instruction = f"""Using the following context:
|
275 |
+
{context}
|
276 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
277 |
+
After writing the document, please provide a list of sources used in your response."""
|
278 |
+
|
279 |
+
inputs = [
|
280 |
+
{"role": "system", "content": instruction},
|
281 |
+
{"role": "user", "content": query}
|
282 |
+
]
|
283 |
+
|
284 |
+
payload = {
|
285 |
+
"messages": inputs,
|
286 |
+
"stream": True,
|
287 |
+
"temperature": temperature
|
288 |
+
}
|
289 |
+
|
290 |
+
full_response = ""
|
291 |
+
for i in range(num_calls):
|
292 |
+
try:
|
293 |
+
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
|
294 |
+
if response.status_code == 200:
|
295 |
+
for line in response.iter_lines():
|
296 |
+
if line:
|
297 |
+
try:
|
298 |
+
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
|
299 |
+
if 'response' in json_response:
|
300 |
+
chunk = json_response['response']
|
301 |
+
full_response += chunk
|
302 |
+
yield full_response
|
303 |
+
except (json.JSONDecodeError, IndexError) as e:
|
304 |
+
logging.error(f"Error parsing streaming response: {str(e)}")
|
305 |
+
continue
|
306 |
+
else:
|
307 |
+
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
308 |
+
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
309 |
+
except Exception as e:
|
310 |
+
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
|
311 |
+
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
|
312 |
+
|
313 |
+
if not full_response:
|
314 |
+
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
315 |
|
316 |
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
317 |
search_results = duckduckgo_search(query)
|
|
|
322 |
{context}
|
323 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
324 |
After writing the document, please provide a list of sources used in your response."""
|
325 |
+
|
326 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
327 |
+
# Use Cloudflare API
|
328 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
329 |
+
yield response, "" # Yield streaming response without sources
|
330 |
+
else:
|
331 |
+
# Use Hugging Face API
|
332 |
+
client = InferenceClient(model, token=huggingface_token)
|
333 |
+
|
334 |
+
main_content = ""
|
335 |
+
for i in range(num_calls):
|
336 |
+
for message in client.chat_completion(
|
337 |
+
messages=[{"role": "user", "content": prompt}],
|
338 |
+
max_tokens=1000,
|
339 |
+
temperature=temperature,
|
340 |
+
stream=True,
|
341 |
+
):
|
342 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
343 |
+
chunk = message.choices[0].delta.content
|
344 |
+
main_content += chunk
|
345 |
+
yield main_content, "" # Yield partial main content without sources
|
346 |
|
347 |
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
348 |
embed = get_embeddings()
|
|
|
356 |
relevant_docs = retriever.get_relevant_documents(query)
|
357 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
358 |
|
359 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
360 |
+
# Use Cloudflare API with the retrieved context
|
361 |
+
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
362 |
+
yield response
|
363 |
+
else:
|
364 |
+
# Use Hugging Face API
|
365 |
+
prompt = f"""Using the following context from the PDF documents:
|
366 |
{context_str}
|
367 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
368 |
+
|
369 |
+
client = InferenceClient(model, token=huggingface_token)
|
370 |
+
|
371 |
+
response = ""
|
372 |
+
for i in range(num_calls):
|
373 |
+
for message in client.chat_completion(
|
374 |
+
messages=[{"role": "user", "content": prompt}],
|
375 |
+
max_tokens=1000,
|
376 |
+
temperature=temperature,
|
377 |
+
stream=True,
|
378 |
+
):
|
379 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
380 |
+
chunk = message.choices[0].delta.content
|
381 |
+
response += chunk
|
382 |
+
yield response # Yield partial response
|
383 |
|
384 |
def vote(data: gr.LikeData):
|
385 |
if data.liked:
|
|
|
452 |
1. Upload PDF documents using the file input at the top.
|
453 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
454 |
3. Ask questions in the chat interface.
|
455 |
+
4. Toggle "Use Web Search" to switch between PDF chat and web search.
|
456 |
5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
457 |
6. Use the provided examples or ask your own questions.
|
458 |
"""
|