Shreyas094 commited on
Commit
be913ab
1 Parent(s): eb3d2d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -363
app.py CHANGED
@@ -1,384 +1,101 @@
1
- import os
2
- import logging
3
  import gradio as gr
 
 
 
4
  import json
5
  from typing import List
6
- from datetime import datetime, timezone
7
  from pydantic import BaseModel, Field
8
- from trafilatura import fetch_url, extract
9
- from langchain_community.llms import HuggingFaceHub
10
-
11
- from llama_cpp_agent import MessagesFormatterType
12
- from llama_cpp_agent.chat_history import BasicChatHistory
13
- from llama_cpp_agent.chat_history.messages import Roles
14
- from llama_cpp_agent.llm_output_settings import (
15
- LlmStructuredOutputSettings,
16
- LlmStructuredOutputType,
17
- )
18
- from llama_cpp_agent.tools import WebSearchTool
19
- from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
20
- from langchain_community.llms import HuggingFaceHub
21
- from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
22
- from pydantic import BaseModel, Field
23
- from llama_cpp_agent.llm_output_settings import LlmStructuredOutputType
24
- from llama_cpp import Llama
25
- from llama_cpp_agent.providers import LlamaCppPythonProvider
26
- from llama_cpp_agent.chat_history import BasicChatHistory
27
- from llama_cpp_agent.chat_history.messages import Roles
28
- from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
29
- from llama_cpp_agent.tools import WebSearchTool
30
- from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
31
- from pydantic import BaseModel, Field
32
- from typing import List
33
-
34
- print("Available LlmStructuredOutputType options:")
35
- for option in LlmStructuredOutputType:
36
- print(option)
37
-
38
- # UI related imports and definitions
39
- css = """
40
- .message-row {
41
- justify-content: space-evenly !important;
42
- }
43
- .message-bubble-border {
44
- border-radius: 6px !important;
45
- }
46
- .message-buttons-bot, .message-buttons-user {
47
- right: 10px !important;
48
- left: auto !important;
49
- bottom: 2px !important;
50
- }
51
- .dark.message-bubble-border {
52
- border-color: #1b0f0f !important;
53
- }
54
- .dark.user {
55
- background: #140b0b !important;
56
- }
57
- .dark.assistant.dark, .dark.pending.dark {
58
- background: #0c0505 !important;
59
- }
60
- """
61
-
62
- PLACEHOLDER = """
63
- <div class="message-bubble-border" style="display:flex; max-width: 600px; border-width: 1px; border-color: #e5e7eb; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); backdrop-filter: blur(10px);">
64
- <figure style="margin: 0;">
65
- <img src="https://huggingface.co/spaces/poscye/ddg-web-search-chat/resolve/main/logo.jpg" alt="Logo" style="width: 100%; height: 100%; border-radius: 8px;">
66
- </figure>
67
- <div style="padding: .5rem 1.5rem;">
68
- <h2 style="text-align: left; font-size: 1.5rem; font-weight: 700; margin-bottom: 0.5rem;">llama-cpp-agent</h2>
69
- <p style="text-align: left; font-size: 16px; line-height: 1.5; margin-bottom: 15px;">DDG Agent allows users to interact with it using natural language, making it easier for them to find the information they need. Offers a convenient and secure way for users to access web-based information.</p>
70
- <div style="display: flex; justify-content: space-between; align-items: center;">
71
- <div style="display: flex; flex-flow: column; justify-content: space-between;">
72
- <span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(229, 70, 77, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #f88181; margin-bottom: 2.5px;">
73
- Mistral 7B Instruct v0.3
74
- </span>
75
- <span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(229, 70, 77, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #f88181; margin-bottom: 2.5px;">
76
- Mixtral 8x7B Instruct v0.1
77
- </span>
78
- <span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(79, 70, 229, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #60a5fa; margin-top: 2.5px;">
79
- Meta Llama 3 8B Instruct
80
- </span>
81
- </div>
82
- <div style="display: flex; justify-content: flex-end; align-items: center;">
83
- <a href="https://discord.gg/fgr5RycPFP" target="_blank" rel="noreferrer" style="padding: .5rem;">
84
- <svg width="24" height="24" fill="currentColor" xmlns="http://www.w3.org/2000/svg" viewBox="0 5 30.67 23.25">
85
- <title>Discord</title>
86
- <path d="M26.0015 6.9529C24.0021 6.03845 21.8787 5.37198 19.6623 5C19.3833 5.48048 19.0733 6.13144 18.8563 6.64292C16.4989 6.30193 14.1585 6.30193 11.8336 6.64292C11.6166 6.13144 11.2911 5.48048 11.0276 5C8.79575 5.37198 6.67235 6.03845 4.6869 6.9529C0.672601 12.8736 -0.41235 18.6548 0.130124 24.3585C2.79599 26.2959 5.36889 27.4739 7.89682 28.2489C8.51679 27.4119 9.07477 26.5129 9.55525 25.5675C8.64079 25.2265 7.77283 24.808 6.93587 24.312C7.15286 24.1571 7.36986 23.9866 7.57135 23.8161C12.6241 26.1255 18.0969 26.1255 23.0876 23.8161C23.3046 23.9866 23.5061 24.1571 23.7231 24.312C22.8861 24.808 22.0182 25.2265 21.1037 25.5675C21.5842 26.5129 22.1422 27.4119 22.7621 28.2489C25.2885 27.4739 27.8769 26.2959 30.5288 24.3585C31.1952 17.7559 29.4733 12.0212 26.0015 6.9529ZM10.2527 20.8402C8.73376 20.8402 7.49382 19.4608 7.49382 17.7714C7.49382 16.082 8.70276 14.7025 10.2527 14.7025C11.7871 14.7025 13.0425 16.082 13.0115 17.7714C13.0115 19.4608 11.7871 20.8402 10.2527 20.8402ZM20.4373 20.8402C18.9183 20.8402 17.6768 19.4608 17.6768 17.7714C17.6768 16.082 18.8873 14.7025 20.4373 14.7025C21.9717 14.7025 23.2271 16.082 23.1961 17.7714C23.1961 19.4608 21.9872 20.8402 20.4373 20.8402Z"></path>
87
- </svg>
88
- </a>
89
- <a href="https://github.com/Maximilian-Winter/llama-cpp-agent" target="_blank" rel="noreferrer" style="padding: .5rem;">
90
- <svg width="24" height="24" fill="currentColor" viewBox="3 3 18 18">
91
- <title>GitHub</title>
92
- <path d="M12 3C7.0275 3 3 7.12937 3 12.2276C3 16.3109 5.57625 19.7597 9.15374 20.9824C9.60374 21.0631 9.77249 20.7863 9.77249 20.5441C9.77249 20.3249 9.76125 19.5982 9.76125 18.8254C7.5 19.2522 6.915 18.2602 6.735 17.7412C6.63375 17.4759 6.19499 16.6569 5.8125 16.4378C5.4975 16.2647 5.0475 15.838 5.80124 15.8264C6.51 15.8149 7.01625 16.4954 7.18499 16.7723C7.99499 18.1679 9.28875 17.7758 9.80625 17.5335C9.885 16.9337 10.1212 16.53 10.38 16.2993C8.3775 16.0687 6.285 15.2728 6.285 11.7432C6.285 10.7397 6.63375 9.9092 7.20749 9.26326C7.1175 9.03257 6.8025 8.08674 7.2975 6.81794C7.2975 6.81794 8.05125 6.57571 9.77249 7.76377C10.4925 7.55615 11.2575 7.45234 12.0225 7.45234C12.7875 7.45234 13.5525 7.55615 14.2725 7.76377C15.9937 6.56418 16.7475 6.81794 16.7475 6.81794C17.2424 8.08674 16.9275 9.03257 16.8375 9.26326C17.4113 9.9092 17.76 10.7281 17.76 11.7432C17.76 15.2843 15.6563 16.0687 13.6537 16.2993C13.98 16.5877 14.2613 17.1414 14.2613 18.0065C14.2613 19.2407 14.25 20.2326 14.25 20.5441C14.25 20.7863 14.4188 21.0746 14.8688 20.9824C16.6554 20.364 18.2079 19.1866 19.3078 17.6162C20.4077 16.0457 20.9995 14.1611 21 12.2276C21 7.12937 16.9725 3 12 3Z"></path>
93
- </svg>
94
- </a>
95
- </div>
96
- </div>
97
- </div>
98
- </div>
99
- """
100
 
101
  # Global variables
102
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
103
 
104
- # Example queries
105
- examples = [
106
- ["latest news about Yann LeCun"],
107
- ["Latest news site:github.blog"],
108
- ["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
109
- ["filetype:pdf intitle:python"]
110
- ]
111
-
112
- class CustomLLMSettings(BaseModel):
113
- structured_output: LlmStructuredOutputSettings
114
- temperature: float = Field(default=0.7)
115
- top_p: float = Field(default=0.95)
116
- repetition_penalty: float = Field(default=1.1)
117
- top_k: int = Field(default=50)
118
- max_tokens: int = Field(default=1000)
119
- stop: list[str] = Field(default_factory=list)
120
- echo: bool = Field(default=False)
121
- stream: bool = Field(default=False)
122
- logprobs: int = Field(default=None)
123
- presence_penalty: float = Field(default=0.0)
124
- frequency_penalty: float = Field(default=0.0)
125
- best_of: int = Field(default=1)
126
- logit_bias: dict = Field(default_factory=dict)
127
- max_tokens_per_summary: int = Field(default=2048)
128
-
129
- class HuggingFaceHubWrapper:
130
- def __init__(self, repo_id, model_kwargs, huggingfacehub_api_token):
131
- self.model = HuggingFaceHub(
132
- repo_id=repo_id,
133
- model_kwargs=model_kwargs,
134
- huggingfacehub_api_token=huggingfacehub_api_token
135
- )
136
- self.temperature = model_kwargs.get('temperature', 0.7)
137
- self.top_p = model_kwargs.get('top_p', 0.95)
138
- self.repetition_penalty = model_kwargs.get('repetition_penalty', 1.1)
139
- self.top_k = model_kwargs.get('top_k', 50)
140
- self.max_tokens = model_kwargs.get('max_length', 1000)
141
- self.max_tokens_per_summary = model_kwargs.get('max_tokens_per_summary', 2048)
142
-
143
- def get_provider_default_settings(self):
144
- return CustomLLMSettings(
145
- structured_output=LlmStructuredOutputSettings(
146
- output_type=LlmStructuredOutputType.no_structured_output,
147
- include_system_prompt=False,
148
- include_user_prompt=False,
149
- include_assistant_prompt=False,
150
- ),
151
- temperature=self.temperature,
152
- top_p=self.top_p,
153
- repetition_penalty=self.repetition_penalty,
154
- top_k=self.top_k,
155
- max_tokens=self.max_tokens,
156
- max_tokens_per_summary=self.max_tokens_per_summary
157
- )
158
-
159
- def get_provider_identifier(self):
160
- return "HuggingFaceHub"
161
-
162
- def __call__(self, *args, **kwargs):
163
- return self.model(*args, **kwargs)
164
-
165
- def get_num_tokens(self, text):
166
- # This is a placeholder. You might need to implement a proper token counting method
167
- return len(text.split())
168
-
169
- def get_max_tokens(self):
170
- # This is a placeholder. Return the actual max tokens for your model
171
- return 2048
172
-
173
- # Utility functions
174
- def get_server_time():
175
- utc_time = datetime.now(timezone.utc)
176
- return utc_time.strftime("%Y-%m-%d %H:%M:%S")
177
-
178
- def get_website_content_from_url(url: str) -> str:
179
- try:
180
- downloaded = fetch_url(url)
181
- result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
182
- if result:
183
- result = json.loads(result)
184
- return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
185
- else:
186
- return ""
187
- except Exception as e:
188
- return f"An error occurred: {str(e)}"
189
 
190
  class CitingSources(BaseModel):
191
  sources: List[str] = Field(
192
  ...,
193
- description="List of sources to cite. Should be an URL of the source. E.g. GitHub URL, Blogpost URL or Newsletter URL."
194
  )
195
 
196
- # Model function
197
- def get_model(temperature, top_p, repetition_penalty, top_k=50, max_tokens=1000, max_tokens_per_summary=2048):
198
- return HuggingFaceHubWrapper(
199
- repo_id="mistralai/Mistral-7B-Instruct-v0.3",
200
- model_kwargs={
201
- "temperature": temperature,
202
- "top_p": top_p,
203
- "repetition_penalty": repetition_penalty,
204
- "top_k": top_k,
205
- "max_length": max_tokens,
206
- "max_tokens_per_summary": max_tokens_per_summary
207
- },
208
- huggingfacehub_api_token=huggingface_token
209
- )
210
-
211
- def get_messages_formatter_type(model_name):
212
- model_name = model_name.lower()
213
- if any(keyword in model_name for keyword in ["meta", "aya"]):
214
- return MessagesFormatterType.LLAMA_3
215
- elif any(keyword in model_name for keyword in ["mistral", "mixtral"]):
216
- return MessagesFormatterType.MISTRAL
217
- elif any(keyword in model_name for keyword in ["einstein", "dolphin"]):
218
- return MessagesFormatterType.CHATML
219
- elif "phi" in model_name:
220
- return MessagesFormatterType.PHI_3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
  else:
222
- return MessagesFormatterType.CHATML
223
-
224
- # Main response function
225
- def respond(
226
- message,
227
- history: list[tuple[str, str]],
228
- model,
229
- system_message,
230
- max_tokens,
231
- temperature,
232
- top_p,
233
- top_k,
234
- repeat_penalty,
235
- ):
236
- global llm
237
- global llm_model
238
-
239
- chat_template = get_messages_formatter_type(model)
240
-
241
- if llm is None or llm_model != model:
242
- llm = Llama(
243
- model_path=f"models/{model}",
244
- flash_attn=True,
245
- n_gpu_layers=81,
246
- n_batch=1024,
247
- n_ctx=get_context_by_model(model),
248
- )
249
- llm_model = model
250
-
251
- provider = LlamaCppPythonProvider(llm)
252
- logging.info(f"Loaded chat examples: {chat_template}")
253
-
254
- search_tool = WebSearchTool(
255
- llm_provider=provider,
256
- message_formatter_type=chat_template,
257
- max_tokens_search_results=12000,
258
- max_tokens_per_summary=2048,
259
- )
260
-
261
- web_search_agent = LlamaCppAgent(
262
- provider,
263
- system_prompt=web_search_system_prompt,
264
- predefined_messages_formatter_type=chat_template,
265
- debug_output=True,
266
- )
267
-
268
- answer_agent = LlamaCppAgent(
269
- provider,
270
- system_prompt=research_system_prompt,
271
- predefined_messages_formatter_type=chat_template,
272
- debug_output=True,
273
- )
274
-
275
- settings = provider.get_provider_default_settings()
276
- settings.stream = False
277
- settings.temperature = temperature
278
- settings.top_k = top_k
279
- settings.top_p = top_p
280
- settings.max_tokens = max_tokens
281
- settings.repeat_penalty = repeat_penalty
282
-
283
- output_settings = LlmStructuredOutputSettings.from_functions(
284
- [search_tool.get_tool()]
285
- )
286
-
287
- messages = BasicChatHistory()
288
- for msn in history:
289
- user = {"role": Roles.user, "content": msn[0]}
290
- assistant = {"role": Roles.assistant, "content": msn[1]}
291
- messages.add_message(user)
292
- messages.add_message(assistant)
293
-
294
- result = web_search_agent.get_chat_response(
295
- message,
296
- llm_sampling_settings=settings,
297
- structured_output_settings=output_settings,
298
- add_message_to_chat_history=False,
299
- add_response_to_chat_history=False,
300
- print_output=False,
301
- )
302
-
303
- outputs = ""
304
- settings.stream = True
305
-
306
- response_text = answer_agent.get_chat_response(
307
- f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" + result[0]["return_value"],
308
- role=Roles.tool,
309
- llm_sampling_settings=settings,
310
- chat_history=messages,
311
- returns_streaming_generator=True,
312
- print_output=False,
313
- )
314
-
315
- for text in response_text:
316
- outputs += text
317
- yield outputs
318
-
319
- output_settings = LlmStructuredOutputSettings.from_pydantic_models(
320
- [CitingSources], LlmStructuredOutputType.object_instance
321
- )
322
-
323
- citing_sources = answer_agent.get_chat_response(
324
- "Cite the sources you used in your response.",
325
- role=Roles.tool,
326
- llm_sampling_settings=settings,
327
- chat_history=messages,
328
- returns_streaming_generator=False,
329
- structured_output_settings=output_settings,
330
- print_output=False,
331
- )
332
-
333
- outputs += "\n\nSources:\n"
334
- outputs += "\n".join(citing_sources.sources)
335
- yield outputs
336
 
 
 
 
 
337
 
338
  # Gradio interface
339
- demo = gr.ChatInterface(
340
- respond,
341
- additional_inputs=[
342
- gr.Textbox(value=web_search_system_prompt, label="System message"),
343
- gr.Slider(minimum=1, maximum=1000, value=1000, step=1, label="Max tokens"),
344
- gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
345
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
346
- gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
347
- gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"),
348
- gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens per summary"),
349
- ],
350
- theme=gr.themes.Soft(
351
- primary_hue="orange",
352
- secondary_hue="amber",
353
- neutral_hue="gray",
354
- font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
355
- body_background_fill_dark="#0c0505",
356
- block_background_fill_dark="#0c0505",
357
- block_border_width="1px",
358
- block_title_background_fill_dark="#1b0f0f",
359
- input_background_fill_dark="#140b0b",
360
- button_secondary_background_fill_dark="#140b0b",
361
- border_color_accent_dark="#1b0f0f",
362
- border_color_primary_dark="#1b0f0f",
363
- background_fill_secondary_dark="#0c0505",
364
- color_accent_soft_dark="transparent",
365
- code_background_fill_dark="#140b0b"
366
- ),
367
- css=css,
368
- retry_btn="Retry",
369
- undo_btn="Undo",
370
- clear_btn="Clear",
371
- submit_btn="Send",
372
- cache_examples=False,
373
- examples=examples,
374
- description="Mistral-7B: Chat with DuckDuckGo Agent",
375
- analytics_enabled=False,
376
- chatbot=gr.Chatbot(
377
- scale=1,
378
- placeholder=PLACEHOLDER,
379
- show_copy_button=True
380
- )
381
  )
382
 
383
  if __name__ == "__main__":
384
- demo.launch()
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceApi
3
+ from duckduckgo_search import DDGS
4
+ import requests
5
  import json
6
  from typing import List
 
7
  from pydantic import BaseModel, Field
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  # Global variables
10
  huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
11
 
12
+ # Function to perform a DuckDuckGo search
13
+ def duckduckgo_search(query):
14
+ with DDGS() as ddgs:
15
+ results = ddgs.text(query, max_results=5)
16
+ return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  class CitingSources(BaseModel):
19
  sources: List[str] = Field(
20
  ...,
21
+ description="List of sources to cite. Should be an URL of the source."
22
  )
23
 
24
+ def get_response_with_search(query):
25
+ # Perform the web search
26
+ search_results = duckduckgo_search(query)
27
+
28
+ # Use the search results as context for the model
29
+ context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
30
+ for result in search_results if 'body' in result)
31
+
32
+ # Prompt formatted for Mistral-7B-Instruct
33
+ prompt = f"""<s>[INST] Using the following context:
34
+ {context}
35
+ Write a detailed and complete research document that fulfills the following user request: '{query}'
36
+ After writing the document, please provide a list of sources used in your response. [/INST]"""
37
+
38
+ # API endpoint for Mistral-7B-Instruct-v0.3
39
+ API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
40
+
41
+ # Headers
42
+ headers = {"Authorization": f"Bearer {huggingface_token}"}
43
+
44
+ # Payload
45
+ payload = {
46
+ "inputs": prompt,
47
+ "parameters": {
48
+ "max_new_tokens": 1000,
49
+ "temperature": 0.7,
50
+ "top_p": 0.95,
51
+ "top_k": 40,
52
+ "repetition_penalty": 1.1
53
+ }
54
+ }
55
+
56
+ # Make the API call
57
+ response = requests.post(API_URL, headers=headers, json=payload)
58
+
59
+ if response.status_code == 200:
60
+ result = response.json()
61
+ if isinstance(result, list) and len(result) > 0:
62
+ generated_text = result[0].get('generated_text', 'No text generated')
63
+
64
+ # Remove the instruction part
65
+ content_start = generated_text.find("[/INST]")
66
+ if content_start != -1:
67
+ generated_text = generated_text[content_start + 7:].strip()
68
+
69
+ # Split the response into main content and sources
70
+ parts = generated_text.split("Sources:", 1)
71
+ main_content = parts[0].strip()
72
+ sources = parts[1].strip() if len(parts) > 1 else ""
73
+
74
+ return main_content, sources
75
+ else:
76
+ return f"Unexpected response format: {result}", ""
77
  else:
78
+ return f"Error: API returned status code {response.status_code}", ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ def gradio_interface(query):
81
+ main_content, sources = get_response_with_search(query)
82
+ formatted_response = f"{main_content}\n\nSources:\n{sources}"
83
+ return formatted_response
84
 
85
  # Gradio interface
86
+ iface = gr.Interface(
87
+ fn=gradio_interface,
88
+ inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
89
+ outputs="text",
90
+ title="AI-powered Web Search Assistant",
91
+ description="Ask a question, and I'll search the web and provide an answer using the Mistral-7B-Instruct model.",
92
+ examples=[
93
+ ["Latest news about Yann LeCun"],
94
+ ["Latest news site:github.blog"],
95
+ ["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
96
+ ["filetype:pdf intitle:python"]
97
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  )
99
 
100
  if __name__ == "__main__":
101
+ iface.launch()