import streamlit as st import h5py import numpy as np import pandas as pd import plotly.express as px import os filename = r'Reduced_SMAP_L4_SM_aup.h5' @st.cache_data def load_h5_data(filename): if not os.path.isfile(filename): raise FileNotFoundError(f"File not found: {filename}") with h5py.File(filename, 'r') as h5: soil_moisture = h5['Analysis_Data/sm_surface_analysis'][:] lat = h5['cell_lat'][:] lon = h5['cell_lon'][:] return lat, lon, soil_moisture try: lat, lon, soil_moisture = load_h5_data(filename) df = pd.DataFrame({ 'Latitude': lat.flatten(), 'Longitude': lon.flatten(), 'Soil Moisture': soil_moisture.flatten() }) st.title("Soil Moisture Data Dashboard") st.write("This dashboard displays soil moisture levels based on latitude and longitude.") min_lat, max_lat = st.slider("Select Latitude Range", float(df['Latitude'].min()), float(df['Latitude'].max()), (float(df['Latitude'].min()), float(df['Latitude'].max()))) min_lon, max_lon = st.slider("Select Longitude Range", float(df['Longitude'].min()), float(df['Longitude'].max()), (float(df['Longitude'].min()), float(df['Longitude'].max()))) filtered_data = df[(df['Latitude'] >= min_lat) & (df['Latitude'] <= max_lat) & (df['Longitude'] >= min_lon) & (df['Longitude'] <= max_lon)] st.write(f"Displaying data for Latitude between {min_lat} and {max_lat} and Longitude between {min_lon} and {max_lon}") st.dataframe(filtered_data) if not filtered_data.empty: fig = px.scatter_mapbox(filtered_data, lat='Latitude', lon='Longitude', color='Soil Moisture', color_continuous_scale=px.colors.cyclical.IceFire, size_max=15, zoom=3) fig.update_layout(mapbox_style="open-street-map") fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) st.plotly_chart(fig) else: st.write("No data available in the selected range.") except FileNotFoundError as e: st.error(str(e)) except Exception as e: st.error(f"An error occurred: {str(e)}")