Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
def load_model(): | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") | |
model = GPT2LMHeadModel.from_pretrained("gpt2-large") | |
return tokenizer, model | |
def generate_blog_post(topic, max_length=200): | |
tokenizer, model = load_model() | |
input_ids = tokenizer.encode(topic, return_tensors='pt') | |
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, pad_token_id=tokenizer.eos_token_id) | |
blog_post = tokenizer.decode(output[0], skip_special_tokens=True) | |
return blog_post | |
st.title("Blog Post Generator") | |
st.write("Enter a topic to generate a blog post using GPT-2 large.") | |
topic = st.text_input("Topic:", "") | |
length = st.slider("Post Length (in tokens):", min_value=50, max_value=500, value=200) | |
if st.button("Generate"): | |
if topic: | |
blog_post = generate_blog_post(topic, max_length=length) | |
st.subheader("Generated Blog Post") | |
st.write(blog_post) | |
else: | |
st.write("Please enter a topic to generate a blog post.") | |