Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the GPT-2 large model and tokenizer
|
5 |
+
model_name = "gpt2-large"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_blogpost(topic):
|
10 |
+
input_text = f"Write a blog post about {topic}:"
|
11 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
12 |
+
outputs = model.generate(inputs, max_length=500, num_return_sequences=1)
|
13 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
return generated_text
|
15 |
+
|
16 |
+
# Streamlit UI
|
17 |
+
st.title("Blog Post Generator")
|
18 |
+
st.write("Generate a blog post for a given topic using GPT-2 large.")
|
19 |
+
|
20 |
+
topic = st.text_input("Enter the topic:")
|
21 |
+
if st.button("Generate"):
|
22 |
+
if topic:
|
23 |
+
blog_post = generate_blogpost(topic)
|
24 |
+
st.write(blog_post)
|
25 |
+
else:
|
26 |
+
st.write("Please enter a topic to generate a blog post.")
|