Spaces:
Sleeping
Sleeping
import time | |
import torch | |
from transformers import BertForSequenceClassification, AdamW | |
from torch.utils.data import DataLoader, TensorDataset | |
from transformers import BertTokenizer | |
import gradio as gr | |
import pandas as pd | |
import os | |
import spaces | |
from spaces.zero.gradio import HTMLError | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(device) | |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased') | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model.to(device) | |
optimizer = AdamW(model.parameters(), lr=1e-5) | |
global_data = None | |
def load_data(file): | |
global global_data | |
df = pd.read_csv(file) | |
inputs = tokenizer(df['text'].tolist(), padding=True, truncation=True, return_tensors="pt") # Mã hóa văn bản | |
labels = torch.tensor(df['label'].tolist()).long() # Đảm bảo tên cột là 'label' | |
global_data = TensorDataset(inputs['input_ids'], inputs['attention_mask'], labels) | |
print(global_data) | |
def get_dataloader(start, end, batch_size=8): | |
global global_data | |
subset = torch.utils.data.Subset(global_data, range(start, end)) | |
return DataLoader(subset, batch_size=batch_size) | |
def train_batch(dataloader): | |
model.train() | |
start_time = time.time() | |
for step, batch in enumerate(dataloader): | |
input_ids, attention_mask, labels = batch | |
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device) | |
optimizer.zero_grad() | |
outputs = model(input_ids, attention_mask=attention_mask, labels=labels) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
elapsed_time = time.time() - start_time | |
if elapsed_time > 10: | |
print('Save checkpoint') | |
if not os.path.exists('./checkpoint'): | |
os.makedirs('./checkpoint') | |
torch.save(model.state_dict(), "./checkpoint/model.pt") | |
return False, "Checkpoint saved. Training paused." | |
return True, "Batch training completed." | |
def train_step(file=None, start_idx=0): | |
if file: | |
load_data(file) | |
print(global_data) | |
start_idx = int(start_idx) | |
# Load lại checkpoint nếu tồn tại | |
if os.path.exists("./checkpoint/model.pt"): | |
print("Loading checkpoint...") | |
model.load_state_dict(torch.load("./checkpoint/model.pt")) | |
else: | |
print("Checkpoint not found, starting fresh...") | |
if not os.path.exists('./checkpoint'): | |
os.makedirs('./checkpoint') | |
torch.save(model.state_dict(), "./checkpoint/model.pt") | |
batch_size = 8 | |
total_samples = len(global_data) | |
counting = 0 | |
while start_idx < total_samples: | |
print("Step:", counting) | |
print("Percent:", (start_idx) / total_samples * 100, "%") | |
counting += 1 | |
end_idx = min(start_idx + (batch_size * 10), total_samples) # 10 batches per loop | |
dataloader = get_dataloader(start_idx, end_idx, batch_size) | |
try: | |
success, message = train_batch(dataloader) | |
if not success: | |
return start_idx, "./checkpoint/model.pt" # Trả về start_idx nếu lỗi xảy ra | |
except HTMLError as e: | |
print(e) | |
if not os.path.exists('./checkpoint'): | |
os.makedirs('./checkpoint') | |
print('Save checkpoint') | |
torch.save(model.state_dict(), "./checkpoint/model.pt") | |
return start_idx, "./checkpoint/model.pt" # Trả về start_idx để lưu lại vị trí | |
start_idx = end_idx | |
if not os.path.exists('./checkpoint'): | |
os.makedirs('./checkpoint') | |
torch.save(model.state_dict(), "./checkpoint/model.pt") | |
return start_idx, "./checkpoint/model.pt" | |
if __name__ == "__main__": | |
iface = gr.Interface( | |
fn=train_step, | |
inputs=[gr.File(label="Upload CSV"), gr.Textbox()], | |
outputs=["text", gradio.File()] | |
) | |
iface.launch() | |