Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,93 @@
|
|
1 |
-
import time
|
2 |
-
import torch
|
3 |
-
from transformers import BertForSequenceClassification, AdamW
|
4 |
-
from torch.utils.data import DataLoader, TensorDataset
|
5 |
-
from transformers import BertTokenizer
|
6 |
-
import gradio as gr
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
import spaces
|
10 |
-
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
print(device)
|
13 |
-
|
14 |
-
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
15 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
16 |
-
model.to(device)
|
17 |
-
|
18 |
-
optimizer = AdamW(model.parameters(), lr=1e-5)
|
19 |
-
|
20 |
-
global_data = None
|
21 |
-
|
22 |
-
def load_data(file):
|
23 |
-
global global_data
|
24 |
-
df = pd.read_csv(file)
|
25 |
-
inputs = tokenizer(df['text'].tolist(), padding=True, truncation=True, return_tensors="pt") # Mã hóa văn bản
|
26 |
-
labels = torch.tensor(df['lable'].tolist()).long() #
|
27 |
-
global_data = TensorDataset(inputs['input_ids'], inputs['attention_mask'], labels)
|
28 |
-
|
29 |
-
print(global_data)
|
30 |
-
|
31 |
-
def get_dataloader(start, end, batch_size=8):
|
32 |
-
global global_data
|
33 |
-
subset = torch.utils.data.Subset(global_data, range(start, end))
|
34 |
-
return DataLoader(subset, batch_size=batch_size)
|
35 |
-
|
36 |
-
@spaces.GPU(duration=120)
|
37 |
-
def train_batch(dataloader):
|
38 |
-
model.train()
|
39 |
-
start_time = time.time()
|
40 |
-
|
41 |
-
for step, batch in enumerate(dataloader):
|
42 |
-
input_ids, attention_mask, labels = batch
|
43 |
-
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
|
44 |
-
|
45 |
-
optimizer.zero_grad()
|
46 |
-
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
47 |
-
loss = outputs.loss
|
48 |
-
loss.backward()
|
49 |
-
optimizer.step()
|
50 |
-
|
51 |
-
elapsed_time = time.time() - start_time
|
52 |
-
if elapsed_time >
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
from transformers import BertForSequenceClassification, AdamW
|
4 |
+
from torch.utils.data import DataLoader, TensorDataset
|
5 |
+
from transformers import BertTokenizer
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
print(device)
|
13 |
+
|
14 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
optimizer = AdamW(model.parameters(), lr=1e-5)
|
19 |
+
|
20 |
+
global_data = None
|
21 |
+
|
22 |
+
def load_data(file):
|
23 |
+
global global_data
|
24 |
+
df = pd.read_csv(file)
|
25 |
+
inputs = tokenizer(df['text'].tolist(), padding=True, truncation=True, return_tensors="pt") # Mã hóa văn bản
|
26 |
+
labels = torch.tensor(df['lable'].tolist()).long() #
|
27 |
+
global_data = TensorDataset(inputs['input_ids'], inputs['attention_mask'], labels)
|
28 |
+
|
29 |
+
print(global_data)
|
30 |
+
|
31 |
+
def get_dataloader(start, end, batch_size=8):
|
32 |
+
global global_data
|
33 |
+
subset = torch.utils.data.Subset(global_data, range(start, end))
|
34 |
+
return DataLoader(subset, batch_size=batch_size)
|
35 |
+
|
36 |
+
@spaces.GPU(duration=120)
|
37 |
+
def train_batch(dataloader):
|
38 |
+
model.train()
|
39 |
+
start_time = time.time()
|
40 |
+
|
41 |
+
for step, batch in enumerate(dataloader):
|
42 |
+
input_ids, attention_mask, labels = batch
|
43 |
+
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
|
44 |
+
|
45 |
+
optimizer.zero_grad()
|
46 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
47 |
+
loss = outputs.loss
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
|
51 |
+
elapsed_time = time.time() - start_time
|
52 |
+
if elapsed_time > 10: # Dừng trước 60 giây để lưu checkpoint
|
53 |
+
print("save checkpoint")
|
54 |
+
torch.save(model.state_dict(), "./checkpoint/model.pt")
|
55 |
+
return False, "Checkpoint saved. Training paused."
|
56 |
+
|
57 |
+
return True, "Batch training completed."
|
58 |
+
|
59 |
+
|
60 |
+
def train_step(file=None):
|
61 |
+
if file:
|
62 |
+
load_data(file)
|
63 |
+
|
64 |
+
start_idx = 0
|
65 |
+
batch_size = 8
|
66 |
+
total_samples = len(global_data)
|
67 |
+
|
68 |
+
while start_idx < total_samples:
|
69 |
+
print(start_idx)
|
70 |
+
end_idx = min(start_idx + (batch_size * 10), total_samples) # Chia nhỏ dữ liệu để xử lý nhanh
|
71 |
+
dataloader = get_dataloader(start_idx, end_idx, batch_size)
|
72 |
+
|
73 |
+
start_time = time.time()
|
74 |
+
success, message = train_batch(dataloader)
|
75 |
+
elapsed_time = time.time() - start_time
|
76 |
+
|
77 |
+
if elapsed_time >= 10: # Kết thúc trước khi hết 60 giây để lưu checkpoint
|
78 |
+
torch.save(model.state_dict(), "./checkpoint/model.pt")
|
79 |
+
return f"{message}. Training paused after {elapsed_time:.2f}s."
|
80 |
+
|
81 |
+
start_idx = end_idx
|
82 |
+
|
83 |
+
torch.save(model.state_dict(), "./checkpoint/model.pt")
|
84 |
+
return "Training completed and model saved."
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
iface = gr.Interface(
|
89 |
+
fn=train_step,
|
90 |
+
inputs=gr.File(label="Upload CSV"),
|
91 |
+
outputs="text"
|
92 |
+
)
|
93 |
+
iface.launch()
|