import gradio as gr import soundfile import time import torch import scipy.io.wavfile from espnet2.bin.tts_inference import Text2Speech from espnet2.utils.types import str_or_none from espnet2.bin.asr_inference import Speech2Text from subprocess import call import os with open('s3prl.sh', 'rb') as file: script = file.read() rc = call(script, shell=True) import sys sys.path.append(os.getcwd()+"/s3prl") os.environ["PYTHONPATH"]=os.getcwd()+"/s3prl" import fairseq print(fairseq.__version__) # exit() # tagen = 'kan-bayashi/ljspeech_vits' # vocoder_tagen = "none" speech2text_slurp = Speech2Text.from_pretrained( asr_train_config="slurp/config.yaml", asr_model_file="slurp/valid.acc.ave_10best.pth", # Decoding parameters are not included in the model file nbest=1 ) speech2text_fsc = Speech2Text.from_pretrained( asr_train_config="fsc/config.yaml", asr_model_file="fsc/valid.acc.ave_5best.pth", # Decoding parameters are not included in the model file nbest=1 ) def inference(wav,data): with torch.no_grad(): if data == "english_slurp": speech, rate = soundfile.read(wav.name) nbests = speech2text_slurp(speech) text, *_ = nbests[0] intent=text.split(" ")[0] scenario=intent.split("_")[0] action=intent.split("_")[1] text="{scenario: "+scenario+", action: "+action+"}" elif data == "english_fsc": speech, rate = soundfile.read(wav.name) nbests = speech2text_fsc(speech) text, *_ = nbests[0] intent=text.split(" ")[0] action=intent.split("_")[0] objects=intent.split("_")[1] location=intent.split("_")[1] text="{action: "+action+", object: "+objects+", location: "+location+"}" # if lang == "chinese": # wav = text2speechch(text)["wav"] # scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy()) # if lang == "japanese": # wav = text2speechjp(text)["wav"] # scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy()) return text title = "ESPnet2-SLU" description = "Gradio demo for ESPnet2-SLU: Advancing Spoken Language Understanding through ESPnet. To use it, simply record your audio or click one of the examples to load them. Read more at the links below." article = "
" examples=[['audio_slurp.flac',"english_slurp"],['audio_fsc.wav',"english_fsc"]] # gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language") gr.Interface( inference, [gr.inputs.Audio(label="input audio",source = "microphone", type="file"),gr.inputs.Radio(choices=["english_slurp","english_fsc"], type="value", default="english_slurp", label="Dataset")], gr.outputs.Textbox(type="str", label="Output"), title=title, description=description, article=article, enable_queue=True, examples=examples ).launch(debug=True)