Voice_Assistant / VAD /vad_handler.py
Siddhant's picture
Upload 2 files
9264210 verified
raw
history blame
2.13 kB
from VAD.vad_iterator import VADIterator
from baseHandler import BaseHandler
import numpy as np
import torch
from rich.console import Console
from utils.utils import int2float
import logging
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
console = Console()
class VADHandler(BaseHandler):
"""
Handles voice activity detection. When voice activity is detected, audio will be accumulated until the end of speech is detected and then passed
to the following part.
"""
def setup(
self,
should_listen,
thresh=0.3,
sample_rate=16000,
min_silence_ms=1000,
min_speech_ms=500,
max_speech_ms=float("inf"),
speech_pad_ms=30,
):
self.should_listen = should_listen
self.sample_rate = sample_rate
self.min_silence_ms = min_silence_ms
self.min_speech_ms = min_speech_ms
self.max_speech_ms = max_speech_ms
self.model, _ = torch.hub.load("snakers4/silero-vad", "silero_vad")
self.iterator = VADIterator(
self.model,
threshold=thresh,
sampling_rate=sample_rate,
min_silence_duration_ms=min_silence_ms,
speech_pad_ms=speech_pad_ms,
)
def process(self, audio_chunk):
audio_int16 = np.frombuffer(audio_chunk, dtype=np.int16)
audio_float32 = int2float(audio_int16)
vad_output = self.iterator(torch.from_numpy(audio_float32))
if vad_output is not None and len(vad_output) != 0:
logger.debug("VAD: end of speech detected")
array = torch.cat(vad_output).cpu().numpy()
duration_ms = len(array) / self.sample_rate * 1000
if duration_ms < self.min_speech_ms or duration_ms > self.max_speech_ms:
logger.debug(
f"audio input of duration: {len(array) / self.sample_rate}s, skipping"
)
else:
self.should_listen.clear()
logger.debug("Stop listening")
yield array