import torch import gradio as gr from utils import * from torch import nn import lightning.pytorch as pl from torch.nn import functional as F device = 'cuda' if torch.cuda.is_available() else 'cpu' HTML_TEMPLATE = """
Generate dialogue for given some initial prompt for context.
Model: GPT, Dataset: arxiv + book + cc, Parameter Count: 160M
""" with gr.Blocks(theme=gr.themes.Glass(),css=".gradio-container {background: url('file=https://github.com/Delve-ERAV1/Conditional-Diffusion/assets/11761529/1ff9d2e1-798f-442a-a1e2-386fdd35010a')}") as interface: gr.HTML(value=HTML_TEMPLATE, show_label=False) gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") with gr.Row(): input_text = gr.Textbox( label="Input Text", value="Enter your prompt here: This text will set the context for the AI's response." ) temperature_dropdown = gr.Slider(0, 1, value=0.8, label="Temperature", info="Set the creativity level: Higher values produce more varied results, lower values generate more predictable text.") top_k_dropdown = gr.Slider(200, 300, value=200, label="Top K", info="Control the randomness: Limits the AI to consider only the top K most likely next words.") max_new_tokens = gr.Slider(10, 100, value=50, label="Max Tokens", info="Choose the length: This determines the maximum number of words the AI will generate.") outputs = gr.Textbox( label="Generated Dialogue" ) inputs = [input_text, temperature_dropdown, top_k_dropdown, max_new_tokens] with gr.Column(): button = gr.Button("Generate") button.click(generate_dialogue, inputs=inputs, outputs=outputs) with gr.Row(): gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=generate_dialogue, cache_examples=True,) interface.launch()