Spaces:
Build error
Build error
import math | |
import random | |
from functools import partial | |
from inspect import isfunction | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from tqdm import tqdm | |
from einops import rearrange | |
from modules.fastspeech.fs2 import FastSpeech2 | |
from modules.diffsinger_midi.fs2 import FastSpeech2MIDI | |
from utils.hparams import hparams | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def cycle(dl): | |
while True: | |
for data in dl: | |
yield data | |
def num_to_groups(num, divisor): | |
groups = num // divisor | |
remainder = num % divisor | |
arr = [divisor] * groups | |
if remainder > 0: | |
arr.append(remainder) | |
return arr | |
class Residual(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
def forward(self, x, *args, **kwargs): | |
return self.fn(x, *args, **kwargs) + x | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) | |
emb = x[:, None] * emb[None, :] | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class Mish(nn.Module): | |
def forward(self, x): | |
return x * torch.tanh(F.softplus(x)) | |
class Upsample(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.conv = nn.ConvTranspose2d(dim, dim, 4, 2, 1) | |
def forward(self, x): | |
return self.conv(x) | |
class Downsample(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.conv = nn.Conv2d(dim, dim, 3, 2, 1) | |
def forward(self, x): | |
return self.conv(x) | |
class Rezero(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
self.g = nn.Parameter(torch.zeros(1)) | |
def forward(self, x): | |
return self.fn(x) * self.g | |
# building block modules | |
class Block(nn.Module): | |
def __init__(self, dim, dim_out, groups=8): | |
super().__init__() | |
self.block = nn.Sequential( | |
nn.Conv2d(dim, dim_out, 3, padding=1), | |
nn.GroupNorm(groups, dim_out), | |
Mish() | |
) | |
def forward(self, x): | |
return self.block(x) | |
class ResnetBlock(nn.Module): | |
def __init__(self, dim, dim_out, *, time_emb_dim, groups=8): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
Mish(), | |
nn.Linear(time_emb_dim, dim_out) | |
) | |
self.block1 = Block(dim, dim_out) | |
self.block2 = Block(dim_out, dim_out) | |
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() | |
def forward(self, x, time_emb): | |
h = self.block1(x) | |
h += self.mlp(time_emb)[:, :, None, None] | |
h = self.block2(h) | |
return h + self.res_conv(x) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum('bhdn,bhen->bhde', k, v) | |
out = torch.einsum('bhde,bhdn->bhen', context, q) | |
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
# gaussian diffusion trainer class | |
def extract(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def cosine_beta_schedule(timesteps, s=0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 1 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return np.clip(betas, a_min=0, a_max=0.999) | |
class GaussianDiffusion(nn.Module): | |
def __init__(self, phone_encoder, out_dims, denoise_fn, | |
timesteps=1000, loss_type='l1', betas=None, spec_min=None, spec_max=None): | |
super().__init__() | |
self.denoise_fn = denoise_fn | |
if hparams.get('use_midi') is not None and hparams['use_midi']: | |
self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims) | |
else: | |
self.fs2 = FastSpeech2(phone_encoder, out_dims) | |
self.fs2.decoder = None | |
self.mel_bins = out_dims | |
if exists(betas): | |
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas | |
else: | |
betas = cosine_beta_schedule(timesteps) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.loss_type = loss_type | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) | |
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) | |
def q_mean_variance(self, x_start, t): | |
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, cond, clip_denoised: bool): | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
) | |
def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
x_recon = self.denoise_fn(x_noisy, t, cond) | |
if self.loss_type == 'l1': | |
if nonpadding is not None: | |
loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() | |
else: | |
# print('are you sure w/o nonpadding?') | |
loss = (noise - x_recon).abs().mean() | |
elif self.loss_type == 'l2': | |
loss = F.mse_loss(noise, x_recon) | |
else: | |
raise NotImplementedError() | |
return loss | |
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, | |
ref_mels=None, f0=None, uv=None, energy=None, infer=False): | |
b, *_, device = *txt_tokens.shape, txt_tokens.device | |
ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, | |
skip_decoder=True, infer=infer) | |
cond = ret['decoder_inp'].transpose(1, 2) | |
if not infer: | |
t = torch.randint(0, self.num_timesteps, (b,), device=device).long() | |
x = ref_mels | |
x = self.norm_spec(x) | |
x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] | |
nonpadding = (mel2ph != 0).float() | |
ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) | |
else: | |
t = self.num_timesteps | |
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) | |
x = torch.randn(shape, device=device) | |
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
x = x[:, 0].transpose(1, 2) | |
ret['mel_out'] = self.denorm_spec(x) | |
return ret | |
def norm_spec(self, x): | |
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 | |
def denorm_spec(self, x): | |
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): | |
return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) | |
def out2mel(self, x): | |
return x | |