|
import re |
|
import gradio as gr |
|
import os |
|
import asyncio |
|
from transformers import pipeline |
|
import time |
|
|
|
|
|
class TaskClassifier: |
|
|
|
def __init__(self): |
|
self.classifier = pipeline("zero-shot-classification", |
|
model="MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7") |
|
|
|
def __call__(self, client_input: str, task_types: str): |
|
"""Classify tasks for LLM-based gent""" |
|
candidate_labels = [label.strip() for label in task_types.split(",")] |
|
time_execution = time.time() |
|
output = self.classifier(str(client_input), candidate_labels, multi_label=False) |
|
|
|
time_execution = round(time.time() - time_execution, 2) |
|
|
|
return f"Task Type : {output['labels'][0]}\nScore : {round(output['scores'][0],2)}\nInference Time : {time_execution}" |
|
|
|
|
|
|
|
|
|
def load_classifier(client_input, task_types): |
|
global classifier |
|
return classifier(client_input, task_types) |
|
|
|
|
|
def question_answer(client_input, task_types): |
|
if client_input.strip()=='': |
|
return '''[ERROR]: Please enter client input (e.g., 'Find the top products for a given category').''' |
|
if task_types.strip() == '': |
|
return '''[ERROR]: Please enter list of task type of LLM-based agents (e.g., 'Greeting, Information retrieval, Sentiment analysis, Text generation, Code generation, Q&A, Summarize'): ''' |
|
return load_classifier(client_input, task_types) |
|
|
|
|
|
classifier = TaskClassifier() |
|
|
|
title = 'Task Clarity for LLM-based Agents' |
|
description = """ Task Clarity for LLM-based Agents is a powerful tool that assists developers in crafting precise task instructions, identifies task types (e.g., Q&A, Text generation) for your LLM-based Agents.""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown(f'<center><h1>{title}</h1></center>') |
|
gr.Markdown(description) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Group(): |
|
gr.Markdown(f'<p style="text-align:center">Report about the model: <a href="https://sinh-nguyen.notion.site/Report-Solving-Task-Clarity-for-LLM-based-Agents-4b49b5229a3f423984743b11f3c2bec8">here</a></p>') |
|
client_input=gr.Textbox(label='''Please enter client's input (e.g., 'Hello?'): ''') |
|
task_types = gr.Textbox(label='''Please enter list of task type of LLM-based agents (e.g., 'Greeting, Information retrieval, Sentiment analysis, Text generation, Code generation, Q&A, Summarization'): ''') |
|
btn = gr.Button(value='Submit') |
|
btn.style(full_width=True) |
|
|
|
with gr.Group(): |
|
answer = gr.Textbox(label='The answer to your question is :') |
|
|
|
btn.click(question_answer, inputs=[client_input, task_types], outputs=[answer]) |
|
|
|
demo.launch(share=True) |
|
|
|
|