Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from unittest.mock import patch | |
import spaces | |
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from transformers.dynamic_module_utils import get_imports | |
import torch | |
import requests | |
from PIL import Image, ImageDraw | |
import random | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import cv2 | |
import io | |
def workaround_fixed_get_imports(filename: str | os.PathLike) -> list[str]: | |
if not str(filename).endswith("/modeling_florence2.py"): | |
return get_imports(filename) | |
imports = get_imports(filename) | |
imports.remove("flash_attn") | |
return imports | |
with patch("transformers.dynamic_module_utils.get_imports", workaround_fixed_get_imports): | |
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True).to("cuda").eval() | |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) | |
colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red', | |
'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue'] | |
def fig_to_pil(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
return Image.open(buf) | |
def run_example(task_prompt, image, text_input=None): | |
if text_input is None: | |
prompt = task_prompt | |
else: | |
prompt = task_prompt + text_input | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
with torch.inference_mode(): | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation( | |
generated_text, | |
task=task_prompt, | |
image_size=(image.size[0], image.size[1]) | |
) | |
return parsed_answer | |
def plot_bbox(image, data): | |
fig, ax = plt.subplots() | |
ax.imshow(image) | |
for bbox, label in zip(data['bboxes'], data['labels']): | |
x1, y1, x2, y2 = bbox | |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') | |
ax.add_patch(rect) | |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='indigo', alpha=0.5)) | |
ax.axis('off') | |
return fig_to_pil(fig) | |
def draw_polygons(image, prediction, fill_mask=False): | |
fig, ax = plt.subplots() | |
ax.imshow(image) | |
scale = 1 | |
for polygons, label in zip(prediction['polygons'], prediction['labels']): | |
color = random.choice(colormap) | |
fill_color = random.choice(colormap) if fill_mask else None | |
for _polygon in polygons: | |
_polygon = np.array(_polygon).reshape(-1, 2) | |
if _polygon.shape[0] < 3: | |
continue | |
_polygon = (_polygon * scale).reshape(-1).tolist() | |
if len(_polygon) % 2 != 0: | |
continue | |
polygon_points = np.array(_polygon).reshape(-1, 2) | |
if fill_mask: | |
polygon = patches.Polygon(polygon_points, edgecolor=color, facecolor=fill_color, linewidth=2) | |
else: | |
polygon = patches.Polygon(polygon_points, edgecolor=color, fill=False, linewidth=2) | |
ax.add_patch(polygon) | |
plt.text(polygon_points[0, 0], polygon_points[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5)) | |
ax.axis('off') | |
return fig_to_pil(fig) | |
def draw_ocr_bboxes(image, prediction): | |
fig, ax = plt.subplots() | |
ax.imshow(image) | |
scale = 1 | |
bboxes, labels = prediction['quad_boxes'], prediction['labels'] | |
for box, label in zip(bboxes, labels): | |
color = random.choice(colormap) | |
new_box = np.array(box) * scale | |
if new_box.ndim == 1: | |
new_box = new_box.reshape(-1, 2) | |
polygon = patches.Polygon(new_box, edgecolor=color, fill=False, linewidth=3) | |
ax.add_patch(polygon) | |
plt.text(new_box[0, 0], new_box[0, 1], label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=0.5)) | |
ax.axis('off') | |
return fig_to_pil(fig) | |
def process_video(input_video_path, task_prompt): | |
cap = cv2.VideoCapture(input_video_path) | |
if not cap.isOpened(): | |
return None | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if frame_width <= 0 or frame_height <= 0 or fps <= 0 or total_frames <= 0: | |
cap.release() | |
return None | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter("output_vid.mp4", fourcc, fps, (frame_width, frame_height)) | |
if not out.isOpened(): | |
cap.release() | |
return None | |
processed_frames = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(frame_rgb) | |
result = run_example(task_prompt, pil_image) | |
processed_image = pil_image | |
if task_prompt == "<OD>": | |
if "<OD>" in result and "bboxes" in result["<OD>"] and "labels" in result["<OD>"]: | |
processed_image = plot_bbox(pil_image, result['<OD>']) | |
elif task_prompt == "<DENSE_REGION_CAPTION>": | |
if "<DENSE_REGION_CAPTION>" in result and "polygons" in result["<DENSE_REGION_CAPTION>"] and "labels" in result["<DENSE_REGION_CAPTION>"]: | |
processed_image = draw_polygons(pil_image, result['<DENSE_REGION_CAPTION>'], fill_mask=True) | |
processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGB2BGR) | |
out.write(processed_frame) | |
processed_frames += 1 | |
cap.release() | |
out.release() | |
cv2.destroyAllWindows() | |
if processed_frames == 0: | |
return None | |
return "output_vid.mp4" | |
css = """ | |
#output { | |
min-height: 100px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>") | |
with gr.Tab(label="Image"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture", type="pil") | |
task_dropdown = gr.Dropdown( | |
choices=["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding", | |
"Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation", | |
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description", | |
"OCR", "OCR with Region"], | |
label="Task", value="Caption" | |
) | |
text_input = gr.Textbox(label="Text Input (is Optional)", visible=False) | |
gr.Examples( | |
examples=[ | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true", | |
"Detailed Caption", | |
"", | |
], | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true", | |
"Object Detection", | |
"", | |
], | |
[ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true", | |
"Caption to Phrase Grounding", | |
"A green car parked in front of a yellow building." | |
], | |
[ | |
"https://datasets-server.huggingface.co/assets/huggingface/documentation-images/--/566a43334e8b6331dddd8142495bc2f3209f32b0/--/default/validation/3/image/image.jpg?Expires=1718892641&Signature=GFpkyFBNrVf~Mq0jFjbpXWQLCOQblOm6Y1R57zl0tZOKWg5lfK8Jv1Tkxv35sMOARYDiJEE7C0hIp0fKazo1lYbv0ZTAKkwHUY2RroifVea4JRCyovJVptsmIZnlXkJU68N7bJhh8K07cu04G5mqaLRRehqDABKqEqgIdtBS5WcUXdoqkl0Fh2c8KN3GK9hZba9E6ZouBXhuffEEzykss1pIm6MW-WLx5l7~RXKu6BwcFq~6--3KoYVM4U~aEQdgTJg6P2ESH4DkEWN8Qpf~vaHBi2CZQSGurM1U0sZqIYrSLPaUov1h00MQMmnNEzMDZUeIq7~j07hVmwWgflQZeA__&Key-Pair-Id=K3EI6M078Z3AC3", | |
"OCR", | |
"" | |
] | |
], | |
inputs=[input_image, task_dropdown, text_input], | |
) | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Results") | |
output_image = gr.Image(label="Image", type="pil") | |
with gr.Tab(label="Video"): | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label="Video") | |
video_task_dropdown = gr.Dropdown( | |
choices=["Object Detection", "Dense Region Caption"], | |
label="Video Task", value="Object Detection" | |
) | |
video_submit_btn = gr.Button(value="Process Video") | |
with gr.Column(): | |
output_video = gr.Video(label="Video") | |
def update_text_input(task): | |
return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation", | |
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category", | |
"Region to Description"]) | |
task_dropdown.change(fn=update_text_input, inputs=task_dropdown, outputs=text_input) | |
def process_image(image, task, text): | |
task_mapping = { | |
"Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)), | |
"Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)), | |
"More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)), | |
"Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))), | |
"Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox(image, result['<OD>']))), | |
"Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox(image, result['<DENSE_REGION_CAPTION>']))), | |
"Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox(image, result['<REGION_PROPOSAL>']))), | |
"Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_polygons(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))), | |
"Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_polygons(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))), | |
"Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])), plot_bbox(image, convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])))), | |
"Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)), | |
"Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)), | |
"OCR": ("<OCR>", lambda result: (result['<OCR>'], image)), | |
"OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))), | |
} | |
if task in task_mapping: | |
prompt, process_func = task_mapping[task] | |
result = run_example(prompt, image, text) | |
return process_func(result) | |
else: | |
return "", image | |
submit_btn.click(fn=process_image, inputs=[input_img, task_dropdown, text_input], outputs=[output_text, output_image]) | |
video_submit_btn.click(fn=process_video, inputs=[input_video, video_task_dropdown], outputs=output_video) | |
demo.launch() |