ProtonDataLabs commited on
Commit
2aa750a
1 Parent(s): a2ed34a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py CHANGED
@@ -470,6 +470,42 @@ if st.session_state['active_card'] == 'card3':
470
  agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
471
  st.dataframe(agg_df_filtered)
472
  st.write(agg_df_filtered.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473
  # Plot the PE Coefficient with Plotly
474
  fig = px.line(
475
  agg_df_filtered,
 
470
  agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
471
  st.dataframe(agg_df_filtered)
472
  st.write(agg_df_filtered.shape)
473
+ # Extract values for the current and previous years from row 1 and row 2 of the dataframe
474
+ current_year_row = agg_df_filtered.iloc[1] # Row 1 - Current Year
475
+ previous_year_row = agg_df_filtered.iloc[0] # Row 2 - Previous Year
476
+
477
+ # Extract values for Unit Price and Sales Volume
478
+ unit_price_current_year = current_year_row['UnitPrice']
479
+ unit_price_previous_year = previous_year_row['UnitPrice']
480
+ sales_volume_current_year = current_year_row['SalesVolume']
481
+ sales_volume_previous_year = previous_year_row['SalesVolume']
482
+
483
+ # Calculate percentage changes for Unit Price and Sales Volume
484
+ unit_price_pct = ((unit_price_current_year - unit_price_previous_year) / unit_price_previous_year) * 100
485
+ sales_volume_pct = ((sales_volume_current_year - sales_volume_previous_year) / sales_volume_previous_year) * 100
486
+
487
+ # Calculate PE Coefficient
488
+ pe_coeff = sales_volume_pct / unit_price_pct
489
+
490
+ # Render LaTeX formulas with dynamic values using st.latex
491
+ st.latex(rf"""
492
+ \text{{Unit Price \% Change}} = \frac{{\text{{Unit Price in Current Year}} - \text{{Unit Price in Previous Year}}}}{{\text{{Unit Price in Previous Year}}}} \times 100 = \frac{{{unit_price_current_year:.2f} - {unit_price_previous_year:.2f}}}{{{unit_price_previous_year:.2f}}} \times 100 = {unit_price_pct:.2f}\%
493
+ """)
494
+
495
+ st.latex(rf"""
496
+ \text{{Sales Volume \% Change}} = \frac{{\text{{Sales Volume in Current Year}} - \text{{Sales Volume in Previous Year}}}}{{\text{{Sales Volume in Previous Year}}}} \times 100 = \frac{{{sales_volume_current_year:.2f} - {sales_volume_previous_year:.2f}}}{{{sales_volume_previous_year:.2f}}} \times 100 = {sales_volume_pct:.2f}\%
497
+ """)
498
+
499
+ st.latex(rf"""
500
+ \text{{PE Coefficient}} = \frac{{\text{{Sales Volume \% Change}}}}{{\text{{Unit Price \% Change}}}} = \frac{{{sales_volume_pct:.2f}}}{{{unit_price_pct:.2f}}} = {pe_coeff:.2f}
501
+ """)
502
+ # Explanation Text
503
+ st.markdown(f"""
504
+ ### Explanation of Calculations (for {current_year_row['Region']}, {current_year_row['Itemtype']}, FY {current_year_row['Fy']}):
505
+ - **Unit Price Percentage Change**: The percentage change in unit price YOY. For FY {current_year_row['Fy']}, the unit price changed by **{unit_price_pct:.2f}%**.
506
+ - **Sales Volume Percentage Change**: The percentage change in sales volume YOY. For FY {current_year_row['Fy']}, the sales volume changed by **{sales_volume_pct:.2f}%**.
507
+ - **Price Elasticity (PE) Coefficient**: The PE coefficient for FY {current_year_row['Fy']} is **{pe_coeff:.2f}**.
508
+ """)
509
  # Plot the PE Coefficient with Plotly
510
  fig = px.line(
511
  agg_df_filtered,