Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- .gitignore +2 -0
- README.md +3 -3
- app.py +124 -0
- requirements-local.txt +7 -0
- requirements.txt +7 -0
- utils/__init__.py +0 -0
- utils/annotate.py +17 -0
- utils/imports.py +13 -0
- utils/models.py +49 -0
- utils/tasks.py +8 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.idea
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Better Florence 2
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.37.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Better Florence 2
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.37.2
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import supervision as sv
|
3 |
+
import torch
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
from utils.annotate import annotate_with_boxes
|
7 |
+
from utils.models import load_models, run_inference, CHECKPOINTS
|
8 |
+
from utils.tasks import TASK_NAMES, TASKS
|
9 |
+
|
10 |
+
MARKDOWN = """
|
11 |
+
# Better Florence-2 Playground 🔥
|
12 |
+
<div>
|
13 |
+
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-florence-2-on-detection-dataset.ipynb">
|
14 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
|
15 |
+
</a>
|
16 |
+
<a href="https://blog.roboflow.com/florence-2/">
|
17 |
+
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
|
18 |
+
</a>
|
19 |
+
<a href="https://arxiv.org/abs/2311.06242">
|
20 |
+
<img src="https://img.shields.io/badge/arXiv-2311.06242-b31b1b.svg" alt="arXiv" style="display:inline-block;">
|
21 |
+
</a>
|
22 |
+
<a href="https://www.youtube.com/watch?v=i3KjYgxNH6w">
|
23 |
+
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
24 |
+
</a>
|
25 |
+
</div>
|
26 |
+
"""
|
27 |
+
|
28 |
+
OBJECT_DETECTION_EXAMPLES = [
|
29 |
+
["microsoft/Florence-2-large-ft", "Object Detection", "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"]
|
30 |
+
]
|
31 |
+
CAPTION_EXAMPLES = [
|
32 |
+
["microsoft/Florence-2-large-ft", "Caption", "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"]
|
33 |
+
]
|
34 |
+
|
35 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
MODELS, PROCESSORS = load_models(DEVICE)
|
37 |
+
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def process(checkpoint_dropdown, task_dropdown, image_input):
|
41 |
+
model = MODELS[checkpoint_dropdown]
|
42 |
+
processor = PROCESSORS[checkpoint_dropdown]
|
43 |
+
task = TASKS[task_dropdown]
|
44 |
+
if task_dropdown == "Object Detection":
|
45 |
+
_, response = run_inference(
|
46 |
+
model, processor, DEVICE, image_input, task)
|
47 |
+
detections = sv.Detections.from_lmm(
|
48 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
49 |
+
return annotate_with_boxes(image_input, detections)
|
50 |
+
elif task_dropdown == "Caption":
|
51 |
+
_, response = run_inference(
|
52 |
+
model, processor, DEVICE, image_input, task)
|
53 |
+
return response[task]
|
54 |
+
|
55 |
+
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown(MARKDOWN)
|
58 |
+
with gr.Row():
|
59 |
+
checkpoint_dropdown_component = gr.Dropdown(
|
60 |
+
choices=CHECKPOINTS,
|
61 |
+
value=CHECKPOINTS[0],
|
62 |
+
label="Model", info="Select a Florence 2 model to use.")
|
63 |
+
task_dropdown_component = gr.Dropdown(
|
64 |
+
choices=TASK_NAMES,
|
65 |
+
value=TASK_NAMES[0],
|
66 |
+
label="Task", info="Select a task to perform with the model.")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
image_input_component = gr.Image(type='pil', label='Image Input')
|
71 |
+
submit_button_component = gr.Button(value='Submit', variant='primary')
|
72 |
+
|
73 |
+
with gr.Column():
|
74 |
+
@gr.render(inputs=task_dropdown_component)
|
75 |
+
def show_output(text):
|
76 |
+
if text == "Object Detection":
|
77 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
78 |
+
submit_button_component.click(
|
79 |
+
fn=process,
|
80 |
+
inputs=[
|
81 |
+
checkpoint_dropdown_component,
|
82 |
+
task_dropdown_component,
|
83 |
+
image_input_component
|
84 |
+
],
|
85 |
+
outputs=image_output_component
|
86 |
+
)
|
87 |
+
elif text == "Caption":
|
88 |
+
text_output_component = gr.Textbox(label='Caption Output')
|
89 |
+
submit_button_component.click(
|
90 |
+
fn=process,
|
91 |
+
inputs=[
|
92 |
+
checkpoint_dropdown_component,
|
93 |
+
task_dropdown_component,
|
94 |
+
image_input_component
|
95 |
+
],
|
96 |
+
outputs=text_output_component
|
97 |
+
)
|
98 |
+
|
99 |
+
# @gr.render(inputs=task_dropdown_component)
|
100 |
+
# def show_examples(text):
|
101 |
+
# if text == "Object Detection":
|
102 |
+
# gr.Examples(
|
103 |
+
# fn=process,
|
104 |
+
# examples=OBJECT_DETECTION_EXAMPLES,
|
105 |
+
# inputs=[
|
106 |
+
# checkpoint_dropdown_component,
|
107 |
+
# task_dropdown_component,
|
108 |
+
# image_input_component
|
109 |
+
# ],
|
110 |
+
# outputs=image_output_component
|
111 |
+
# )
|
112 |
+
# elif text == "Caption":
|
113 |
+
# gr.Examples(
|
114 |
+
# fn=process,
|
115 |
+
# examples=CAPTION_EXAMPLES,
|
116 |
+
# inputs=[
|
117 |
+
# checkpoint_dropdown_component,
|
118 |
+
# task_dropdown_component,
|
119 |
+
# image_input_component
|
120 |
+
# ],
|
121 |
+
# outputs=text_output_component
|
122 |
+
# )
|
123 |
+
|
124 |
+
demo.launch(debug=False, show_error=True, max_threads=1)
|
requirements-local.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
einops
|
3 |
+
timm
|
4 |
+
gradio
|
5 |
+
transformers
|
6 |
+
gradio-image-prompter
|
7 |
+
supervision==0.22.0rc1
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
spaces
|
3 |
+
timm
|
4 |
+
gradio
|
5 |
+
transformers
|
6 |
+
gradio-image-prompter
|
7 |
+
supervision==0.22.0rc1
|
utils/__init__.py
ADDED
File without changes
|
utils/annotate.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import supervision as sv
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
def annotate_with_boxes(image: Image, detections: sv.Detections) -> Image:
|
6 |
+
annotated_image = image.copy()
|
7 |
+
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
|
8 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
9 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(
|
10 |
+
color_lookup=sv.ColorLookup.INDEX, thickness=thickness)
|
11 |
+
label_annotator = sv.LabelAnnotator(
|
12 |
+
color_lookup=sv.ColorLookup.INDEX,
|
13 |
+
text_scale=text_scale,
|
14 |
+
text_thickness=thickness)
|
15 |
+
annotated_image = bounding_box_annotator.annotate(annotated_image, detections)
|
16 |
+
annotated_image = label_annotator.annotate(annotated_image, detections)
|
17 |
+
return annotated_image
|
utils/imports.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from typing import Union
|
4 |
+
from transformers.dynamic_module_utils import get_imports
|
5 |
+
|
6 |
+
|
7 |
+
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
|
8 |
+
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
|
9 |
+
if not str(filename).endswith("/modeling_florence2.py"):
|
10 |
+
return get_imports(filename)
|
11 |
+
imports = get_imports(filename)
|
12 |
+
imports.remove("flash_attn")
|
13 |
+
return imports
|
utils/models.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Tuple, Dict, Any
|
3 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
+
from unittest.mock import patch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from utils.imports import fixed_get_imports
|
8 |
+
|
9 |
+
CHECKPOINTS = [
|
10 |
+
"microsoft/Florence-2-large-ft",
|
11 |
+
"microsoft/Florence-2-large",
|
12 |
+
"microsoft/Florence-2-base-ft",
|
13 |
+
"microsoft/Florence-2-base",
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def load_models(device: torch.device) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
18 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
|
19 |
+
models = {}
|
20 |
+
processors = {}
|
21 |
+
for checkpoint in CHECKPOINTS:
|
22 |
+
models[checkpoint] = AutoModelForCausalLM.from_pretrained(
|
23 |
+
checkpoint, trust_remote_code=True).to(device)
|
24 |
+
processors[checkpoint] = AutoProcessor.from_pretrained(
|
25 |
+
checkpoint, trust_remote_code=True)
|
26 |
+
return models, processors
|
27 |
+
|
28 |
+
|
29 |
+
def run_inference(
|
30 |
+
model: Any,
|
31 |
+
processor: Any,
|
32 |
+
device: torch.device,
|
33 |
+
image: Image,
|
34 |
+
task: str,
|
35 |
+
text: str = ""
|
36 |
+
) -> Tuple[str, Dict]:
|
37 |
+
prompt = task + text
|
38 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
39 |
+
generated_ids = model.generate(
|
40 |
+
input_ids=inputs["input_ids"],
|
41 |
+
pixel_values=inputs["pixel_values"],
|
42 |
+
max_new_tokens=1024,
|
43 |
+
num_beams=3
|
44 |
+
)
|
45 |
+
generated_text = processor.batch_decode(
|
46 |
+
generated_ids, skip_special_tokens=False)[0]
|
47 |
+
response = processor.post_process_generation(
|
48 |
+
generated_text, task=task, image_size=image.size)
|
49 |
+
return generated_text, response
|
utils/tasks.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
TASK_NAMES = [
|
2 |
+
"Object Detection",
|
3 |
+
"Caption"
|
4 |
+
]
|
5 |
+
TASKS = {
|
6 |
+
"Object Detection": "<OD>",
|
7 |
+
"Caption": "<CAPTION>"
|
8 |
+
}
|