Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple | |
import gradio as gr | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from utils.florence import load_model, run_inference, FLORENCE_DETAILED_CAPTION_TASK, \ | |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK | |
MARKDOWN = """ | |
# Florence-2 + SAM2 🔥 | |
""" | |
DEVICE = torch.device("cuda") | |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_model(device=DEVICE) | |
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
LABEL_ANNOTATOR = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
def process( | |
image_input, | |
) -> Tuple[Image.Image, str]: | |
_, result = run_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_DETAILED_CAPTION_TASK | |
) | |
caption = result[FLORENCE_DETAILED_CAPTION_TASK] | |
_, result = run_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, | |
text=caption | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image_input.size | |
) | |
output_image = image_input.copy() | |
output_image = BOX_ANNOTATOR.annotate(output_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections) | |
return output_image, caption | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image( | |
type='pil', label='Upload image') | |
submit_button_component = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
image_output_component = gr.Image(type='pil', label='Image output') | |
text_output_component = gr.Textbox(label='Caption output') | |
submit_button_component.click( | |
fn=process, | |
inputs=[image_input_component], | |
outputs=[ | |
image_output_component, | |
text_output_component | |
] | |
) | |
demo.launch(debug=False, show_error=True, max_threads=1) | |