SmilingWolf commited on
Commit
ff17aaa
1 Parent(s): b40c0ad

Danbooru2022 Explorer v1.0

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.index filter=lfs diff=lfs merge=lfs -text
Utils/dbimutils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DanBooru IMage Utility functions
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+
8
+ def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
9
+ if img.endswith(".gif"):
10
+ img = Image.open(img)
11
+ img = img.convert("RGB")
12
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
13
+ else:
14
+ img = cv2.imread(img, flag)
15
+ return img
16
+
17
+
18
+ def smart_24bit(img):
19
+ if img.dtype is np.dtype(np.uint16):
20
+ img = (img / 257).astype(np.uint8)
21
+
22
+ if len(img.shape) == 2:
23
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
24
+ elif img.shape[2] == 4:
25
+ trans_mask = img[:, :, 3] == 0
26
+ img[trans_mask] = [255, 255, 255, 255]
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
28
+ return img
29
+
30
+
31
+ def make_square(img, target_size):
32
+ old_size = img.shape[:2]
33
+ desired_size = max(old_size)
34
+ desired_size = max(desired_size, target_size)
35
+
36
+ delta_w = desired_size - old_size[1]
37
+ delta_h = desired_size - old_size[0]
38
+ top, bottom = delta_h // 2, delta_h - (delta_h // 2)
39
+ left, right = delta_w // 2, delta_w - (delta_w // 2)
40
+
41
+ color = [255, 255, 255]
42
+ new_im = cv2.copyMakeBorder(
43
+ img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
44
+ )
45
+ return new_im
46
+
47
+
48
+ def smart_resize(img, size):
49
+ # Assumes the image has already gone through make_square
50
+ if img.shape[0] > size:
51
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
52
+ elif img.shape[0] < size:
53
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
54
+ return img
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import functools
3
+ import json
4
+ from pathlib import Path
5
+
6
+ import faiss
7
+ import gradio as gr
8
+ import numpy as np
9
+ import PIL.Image
10
+ import requests
11
+ import tensorflow as tf
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ from Utils import dbimutils
15
+
16
+ TITLE = "## Danbooru Explorer"
17
+ DESCRIPTION = """
18
+ Image similarity-based retrieval tool using:
19
+ - [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2) as feature extractor
20
+ - [Faiss](https://github.com/facebookresearch/faiss) and [autofaiss](https://github.com/criteo/autofaiss) for indexing
21
+ """
22
+
23
+ CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
24
+ CONV_MODEL_REVISION = "v2.0"
25
+ CONV_FEXT_LAYER = "predictions_norm"
26
+
27
+
28
+ def parse_args() -> argparse.Namespace:
29
+ parser = argparse.ArgumentParser()
30
+ parser.add_argument("--share", action="store_true")
31
+ return parser.parse_args()
32
+
33
+
34
+ def download_model(model_repo, model_revision):
35
+ model_files = [
36
+ {"filename": "saved_model.pb", "subfolder": ""},
37
+ {"filename": "keras_metadata.pb", "subfolder": ""},
38
+ {"filename": "variables.index", "subfolder": "variables"},
39
+ {"filename": "variables.data-00000-of-00001", "subfolder": "variables"},
40
+ ]
41
+
42
+ model_file_paths = []
43
+ for elem in model_files:
44
+ model_file_paths.append(
45
+ Path(hf_hub_download(model_repo, revision=model_revision, **elem))
46
+ )
47
+
48
+ model_path = model_file_paths[0].parents[0]
49
+ return model_path
50
+
51
+
52
+ def load_model(model_repo, model_revision, feature_extraction_layer):
53
+ model_path = download_model(model_repo, model_revision)
54
+ full_model = tf.keras.models.load_model(model_path)
55
+ model = tf.keras.models.Model(
56
+ full_model.inputs, full_model.get_layer(feature_extraction_layer).output
57
+ )
58
+ return model
59
+
60
+
61
+ def danbooru_id_to_url(image_id, selected_ratings, api_username="", api_key=""):
62
+ headers = {"User-Agent": "image_similarity_tool"}
63
+ ratings_to_letters = {
64
+ "General": "g",
65
+ "Sensitive": "s",
66
+ "Questionable": "q",
67
+ "Explicit": "e",
68
+ }
69
+
70
+ acceptable_ratings = [ratings_to_letters[x] for x in selected_ratings]
71
+
72
+ image_url = f"https://danbooru.donmai.us/posts/{image_id}.json"
73
+ if api_username != "" and api_key != "":
74
+ image_url = f"{image_url}?api_key={api_key}&login={api_username}"
75
+
76
+ r = requests.get(image_url, headers=headers)
77
+ if r.status_code != 200:
78
+ return None
79
+
80
+ content = json.loads(r.text)
81
+ image_url = content["large_file_url"] if "large_file_url" in content else None
82
+ image_url = image_url if content["rating"] in acceptable_ratings else None
83
+ return image_url
84
+
85
+
86
+ class SimilaritySearcher:
87
+ def __init__(self, model, images_ids):
88
+ self.knn_index = None
89
+ self.knn_metric = None
90
+
91
+ self.model = model
92
+ self.images_ids = images_ids
93
+
94
+ def change_index(self, knn_metric):
95
+ if knn_metric == self.knn_metric:
96
+ return
97
+
98
+ if knn_metric == "ip":
99
+ self.knn_index = faiss.read_index("index/ip_knn.index")
100
+ config = json.loads(open("index/ip_infos.json").read())["index_param"]
101
+ elif knn_metric == "cosine":
102
+ self.knn_index = faiss.read_index("index/cosine_knn.index")
103
+ config = json.loads(open("index/cosine_infos.json").read())["index_param"]
104
+
105
+ faiss.ParameterSpace().set_index_parameters(self.knn_index, config)
106
+ self.knn_metric = knn_metric
107
+
108
+ def predict(
109
+ self, image, selected_ratings, knn_metric, api_username, api_key, n_neighbours
110
+ ):
111
+ _, height, width, _ = self.model.inputs[0].shape
112
+
113
+ self.change_index(knn_metric)
114
+
115
+ # Alpha to white
116
+ image = image.convert("RGBA")
117
+ new_image = PIL.Image.new("RGBA", image.size, "WHITE")
118
+ new_image.paste(image, mask=image)
119
+ image = new_image.convert("RGB")
120
+ image = np.asarray(image)
121
+
122
+ # PIL RGB to OpenCV BGR
123
+ image = image[:, :, ::-1]
124
+
125
+ image = dbimutils.make_square(image, height)
126
+ image = dbimutils.smart_resize(image, height)
127
+ image = image.astype(np.float32)
128
+ image = np.expand_dims(image, 0)
129
+ target = self.model(image).numpy()
130
+
131
+ if self.knn_metric == "cosine":
132
+ faiss.normalize_L2(target)
133
+
134
+ dists, indexes = self.knn_index.search(target, k=n_neighbours)
135
+ neighbours_ids = self.images_ids[indexes][0]
136
+ neighbours_ids = [int(x) for x in neighbours_ids]
137
+
138
+ captions = []
139
+ for image_id, dist in zip(neighbours_ids, dists[0]):
140
+ captions.append(f"{image_id}/{dist:.2f}")
141
+
142
+ image_urls = []
143
+ for image_id in neighbours_ids:
144
+ current_url = danbooru_id_to_url(
145
+ image_id, selected_ratings, api_username, api_key
146
+ )
147
+ if current_url is not None:
148
+ image_urls.append(current_url)
149
+ return list(zip(image_urls, captions))
150
+
151
+
152
+ def main():
153
+ args = parse_args()
154
+ model = load_model(CONV_MODEL_REPO, CONV_MODEL_REVISION, CONV_FEXT_LAYER)
155
+ images_ids = np.load("index/cosine_ids.npy")
156
+
157
+ searcher = SimilaritySearcher(model=model, images_ids=images_ids)
158
+
159
+ with gr.Blocks() as demo:
160
+ gr.Markdown(TITLE)
161
+ gr.Markdown(DESCRIPTION)
162
+
163
+ with gr.Row():
164
+ input = gr.Image(type="pil", label="Input")
165
+ with gr.Column():
166
+ with gr.Row():
167
+ api_username = gr.Textbox(label="Danbooru API Username")
168
+ api_key = gr.Textbox(label="Danbooru API Key")
169
+ with gr.Row():
170
+ selected_ratings = gr.CheckboxGroup(
171
+ choices=["General", "Sensitive", "Questionable", "Explicit"],
172
+ value=["General", "Sensitive"],
173
+ label="Ratings",
174
+ )
175
+ selected_metric = gr.Radio(
176
+ choices=["cosine"],
177
+ value="cosine",
178
+ label="Metric selection",
179
+ visible=False,
180
+ )
181
+ n_neighbours = gr.Slider(
182
+ minimum=1, maximum=20, value=5, step=1, label="# of images"
183
+ )
184
+ find_btn = gr.Button("Find similar images")
185
+ similar_images = gr.Gallery(label="Similar images")
186
+
187
+ similar_images.style(grid=5)
188
+ find_btn.click(
189
+ fn=searcher.predict,
190
+ inputs=[
191
+ input,
192
+ selected_ratings,
193
+ selected_metric,
194
+ api_username,
195
+ api_key,
196
+ n_neighbours,
197
+ ],
198
+ outputs=[similar_images],
199
+ )
200
+
201
+ demo.queue()
202
+ demo.launch(share=args.share)
203
+
204
+
205
+ if __name__ == "__main__":
206
+ main()
index/cosine_ids.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df724519c8c1981e49d80e2430261deb4fb6edf6d9c04e134427879710747394
3
+ size 21830676
index/cosine_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"index_key": "OPQ256_1280,IVF16384_HNSW32,PQ256x8", "index_param": "nprobe=16,efSearch=32,ht=2048", "index_path": "/home/SmilingWolf/eval/index/ConvNextBV1_01_14_2023_08h37m46s_cosine_knn.index", "size in bytes": 1535843672, "avg_search_speed_ms": 10.164478485783887, "99p_search_speed_ms": 12.419190758373587, "reconstruction error %": 22.007358074188232, "nb vectors": 5457637, "vectors dimension": 1024, "compression ratio": 14.555180035276402}
index/cosine_knn.index ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a718ab8370df8b9d84002c55f945ef241e4cc3450d306c2ecd97661f51022ad
3
+ size 1535843672