car_counting / app.py
sneharaidu
changes
ad9abdd
raw
history blame
3.89 kB
import streamlit as st
import cv2
import numpy as np
from yolov5 import YOLOv5
from sort.sort import Sort
import tempfile
import shutil
from moviepy.editor import VideoFileClip, concatenate_videoclips, ImageSequenceClip
import os
# Load the pre-trained model and initialize the SORT tracker
model_path = 'yolov5s.pt' # Ensure this path points to the model file
model = YOLOv5(model_path, device='cpu')
tracker = Sort()
def process_video(uploaded_file):
# Save the uploaded file to a temporary location
temp_file_path = "temp_video.mp4"
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.getbuffer())
# Use moviepy to read the video file
video_clip = VideoFileClip(temp_file_path)
total_frames = int(video_clip.fps * video_clip.duration)
width, height = video_clip.size
# Temporary directory to save processed video frames
temp_dir = tempfile.mkdtemp()
unique_cars = set()
progress_bar = st.progress(0)
for frame_idx, frame in enumerate(video_clip.iter_frames()):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
progress_percentage = int((frame_idx + 1) / total_frames * 100)
progress_bar.progress(progress_percentage)
# Detection and tracking logic
results = model.predict(frame)
preds = results.pandas().xyxy[0]
detections = []
for index, row in preds.iterrows():
if row['name'] == 'car':
xmin, ymin, xmax, ymax, conf = row['xmin'], row['ymin'], row['xmax'], row['ymax'], row['confidence']
detections.append([xmin, ymin, xmax, ymax, conf])
if detections:
detections_np = np.array(detections)
trackers = tracker.update(detections_np)
for d in trackers:
unique_cars.add(int(d[4]))
xmin, ymin, xmax, ymax = map(int, d[:4])
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
cv2.putText(frame, f'ID: {int(d[4])}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
cv2.putText(frame, f'Unique Cars: {len(unique_cars)}', (10, 35), cv2.FONT_HERSHEY_SIMPLEX, 1.25, (0, 255, 0), 2)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert back to RGB for moviepy
cv2.imwrite(f"{temp_dir}/{frame_idx:04d}.jpg", frame)
frames_files = [os.path.join(temp_dir, f"{i:04d}.jpg") for i in range(total_frames)]
clip = ImageSequenceClip(frames_files, fps=video_clip.fps)
output_video_path = 'processed_video.mp4'
clip.write_videofile(output_video_path, codec='libx264') # Use libx264 codec for compatibility
# Remove temporary directory and temporary files
shutil.rmtree(temp_dir)
return output_video_path
def main():
# Initialize session state variables if they don't exist
if 'output_video_path' not in st.session_state:
st.session_state.output_video_path = None
st.sidebar.image("logo.jpg", use_column_width=True)
uploaded_file = st.sidebar.file_uploader("Upload a video", type=['mp4'])
st.title("Car Detection and Tracking")
if uploaded_file is not None:
# Process the video only if it hasn't been processed yet or a new file is uploaded
if st.session_state.output_video_path is None or st.session_state.uploaded_file_name != uploaded_file.name:
st.session_state.uploaded_file_name = uploaded_file.name
st.session_state.output_video_path = process_video(uploaded_file)
# Display the processed video
st.video(st.session_state.output_video_path)
# Provide a download link for the processed video
with open(st.session_state.output_video_path, "rb") as file:
st.download_button("Download Processed Video", file, file_name="processed_video.mp4")
if __name__ == "__main__":
main()