Spaces:
Runtime error
Runtime error
import gradio as gr | |
gr.load("models/m3hrdadfi/wav2vec2-large-xlsr-persian").launch() | |
import librosa | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from datasets import load_dataset | |
import numpy as np | |
import hazm | |
import re | |
import string | |
import IPython.display as ipd | |
_normalizer = hazm.Normalizer() | |
chars_to_ignore = [ | |
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", | |
"#", "!", "؟", "?", "«", "»", "ء", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?", | |
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„' | |
] | |
# In case of farsi | |
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits) | |
chars_to_mapping = { | |
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی', | |
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی", | |
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع", | |
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", "ئ": "ی", 'ﺍ': "ا", 'ة': "ه", | |
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش", | |
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ", | |
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ", | |
} | |
def multiple_replace(text, chars_to_mapping): | |
pattern = "|".join(map(re.escape, chars_to_mapping.keys())) | |
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text)) | |
def remove_special_characters(text, chars_to_ignore_regex): | |
text = re.sub(chars_to_ignore_regex, '', text).lower() + " " | |
return text | |
def normalizer(batch, chars_to_ignore, chars_to_mapping): | |
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]""" | |
text = batch["sentence"].lower().strip() | |
text = _normalizer.normalize(text) | |
text = multiple_replace(text, chars_to_mapping) | |
text = remove_special_characters(text, chars_to_ignore_regex) | |
batch["sentence"] = text | |
return batch | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
speech_array = speech_array.squeeze().numpy() | |
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) | |
batch["speech"] = speech_array | |
return batch | |
def predict(batch): | |
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
input_values = features.input_values.to(device) | |
attention_mask = features.attention_mask.to(device) | |
with torch.no_grad(): | |
logits = model(input_values, attention_mask=attention_mask).logits | |
pred_ids = torch.argmax(logits, dim=-1) | |
batch["predicted"] = processor.batch_decode(pred_ids)[0] | |
return batch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian") | |
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian").to(device) | |
dataset = load_dataset("common_voice", "fa", split="test[:1%]") | |
dataset = dataset.map( | |
normalizer, | |
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping}, | |
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) | |
) | |
dataset = dataset.map(speech_file_to_array_fn) | |
result = dataset.map(predict) | |
max_items = np.random.randint(0, len(result), 20).tolist() | |
for i in max_items: | |
reference, predicted = result["sentence"][i], result["predicted"][i] | |
print("reference:", reference) | |
print("predicted:", predicted) | |
print('---') | |