Spaces:
Sleeping
Sleeping
skibidi
Browse files
app.py
CHANGED
@@ -4,35 +4,35 @@ import numpy as np
|
|
4 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
5 |
from PIL import Image
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
model.eval()
|
14 |
|
|
|
15 |
def get_encoder_activations(x):
|
16 |
encoder_output = model.vit(x)
|
17 |
final_activations = encoder_output.last_hidden_state
|
18 |
return final_activations
|
19 |
-
|
20 |
image = input_image.convert('RGB')
|
21 |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
22 |
-
pixel_values.to(device)
|
23 |
pixel_values.requires_grad_(True)
|
24 |
|
25 |
-
for iteration in range(iterations
|
26 |
model.zero_grad()
|
27 |
if pixel_values.grad is not None:
|
28 |
pixel_values.grad.data.zero_()
|
29 |
|
30 |
-
final_activations = get_encoder_activations(pixel_values
|
31 |
target_sum = final_activations.sum()
|
32 |
target_sum.backward()
|
33 |
|
34 |
with torch.no_grad():
|
35 |
-
pixel_values.data += learning_rate
|
36 |
pixel_values.data = torch.clamp(pixel_values.data, -1, 1)
|
37 |
|
38 |
updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
|
@@ -50,4 +50,4 @@ iface = gr.Interface(
|
|
50 |
outputs=gr.Image(type="numpy", label="Processed Image")
|
51 |
)
|
52 |
|
53 |
-
iface.launch()
|
|
|
4 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
5 |
from PIL import Image
|
6 |
|
7 |
+
# Load model and feature extractor outside the function
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-large-patch32-384')
|
10 |
+
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
|
11 |
+
model.to(device)
|
12 |
+
model.eval()
|
|
|
13 |
|
14 |
+
def process_image(input_image, learning_rate, iterations):
|
15 |
def get_encoder_activations(x):
|
16 |
encoder_output = model.vit(x)
|
17 |
final_activations = encoder_output.last_hidden_state
|
18 |
return final_activations
|
19 |
+
|
20 |
image = input_image.convert('RGB')
|
21 |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
22 |
+
pixel_values = pixel_values.to(device)
|
23 |
pixel_values.requires_grad_(True)
|
24 |
|
25 |
+
for iteration in range(iterations):
|
26 |
model.zero_grad()
|
27 |
if pixel_values.grad is not None:
|
28 |
pixel_values.grad.data.zero_()
|
29 |
|
30 |
+
final_activations = get_encoder_activations(pixel_values)
|
31 |
target_sum = final_activations.sum()
|
32 |
target_sum.backward()
|
33 |
|
34 |
with torch.no_grad():
|
35 |
+
pixel_values.data += learning_rate * pixel_values.grad.data
|
36 |
pixel_values.data = torch.clamp(pixel_values.data, -1, 1)
|
37 |
|
38 |
updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
|
|
|
50 |
outputs=gr.Image(type="numpy", label="Processed Image")
|
51 |
)
|
52 |
|
53 |
+
iface.launch()
|